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We provide a systematic comparison of the many-body localization (MBL) transition in spin chains
with nonrandom quasiperiodic versus random fields. We find evidence suggesting that these belong to
two separate universality classes: the first dominated by “intrinsic” intrasample randomness, and the
second dominated by external intersample quenched randomness. We show that the effects of intersample
quenched randomness are strongly growing, but not yet dominant, at the system sizes probed by exact-
diagonalization studies on random models. Thus, the observed finite-size critical scaling collapses in such
studies appear to be in a preasymptotic regime near the nonrandom universality class, but showing signs of
the initial crossover towards the external-randomness-dominated universality class. Our results provide an
explanation for why exact-diagonalization studies on random models see an apparent scaling near the
transition while also obtaining finite-size scaling exponents that strongly violate Harris-Chayes bounds that
apply to disorder-driven transitions. We also show that the MBL phase is more stable for the quasiperiodic
model as compared to the random one, and the transition in the quasiperiodic model suffers less from
certain finite-size effects.
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Introduction.—Many-body localization (MBL) general-
izes the phenomenon of Anderson localization to the
interacting setting [1–6]. The dynamics in an MBL system
fails to establish local thermal equilibrium, and even highly
excited states can retain local memory of their initial
conditions for arbitrarily late times. The transition between
an MBL phase and a “thermalizing” one is not a thermo-
dynamic phase transition and lies outside the framework
of equilibrium statistical mechanics. Instead it is a novel
eigenstate phase transition [7,8] across which thermal and
“volume-law” entangled many-body eigenstates obeying
the eigenstate thermalization hypothesis (ETH) [9–11]
change in a singular way to non-thermal and area-law
entangled eigenstates in the MBL phase.
Although the MBL transition has attracted much recent

interest [12–29], very little is definitively known about its
properties. Phenomenological renormalization group (RG)
treatments of the transition are approximate but can probe
large system sizes, and such studies [26–29] find a
continuous transition in one dimension with a finite-size
critical scaling exponent νFS ∼ 3 satisfying rigorous Harris/
CCFS/CLO scaling bounds [30–32] that require νFS ≥ 2=d
for transitions in d dimensions in the presence of quenched
randomness. On the other hand, most other studies of
the transition use numerical exact diagonalization (ED) of
spin chains, which is limited to system sizes L ≤ 22. These
ED studies observe an apparent scaling collapse near the
transition, but with scaling exponents νFS ∼ 1 violating the
CCFS/CLO bound [12,13]. Strikingly, some aspects of this
transition even look first order in that quantities like the

eigenstate entanglement entropy (EE) of small subsystems
can vary discontinuously across the transition [25,29].
A sensitive probe of the MBL transition is the standard

deviation of the half-chain EE, ΔS, which peaks at the
transition as the eigenstates change from area-law to
volume-law entangled [12]. A careful parsing of ΔS across
inter- and intrasample contributions near the transition
reveals two notable features [25]: (i) a sizeable volume-
law scaling for ΔS across eigenstates of the same sample, a
property that none of the RG treatments capture, and (ii) a
superlinear growth with L for the sample-to-sample con-
tribution to ΔS at the system sizes studied by ED, a trend
that is unsustainable in the large-L limit since the maximum
possible EE scales as a volume law. This parsing indicates
that the observed violations of CCFS/CLO bounds (which
are derived from sample-to-sample variations) might result
from a scenario in which the effect of quenched random-
ness across samples is not yet fully manifest, but growing
strongly, at the sizes probed by ED [25]. These data also
suggest an intriguing scenario in which there might be
two universality classes for transitions between MBL and
thermal phases: one dominated by intrinsic eigenstate
randomness within a given sample, and the second domi-
nated by external quenched randomness across samples.
In this scenario, the observed critical finite-size scaling
collapses would appear to be in a preasymptotic regime
near the first universality class (for which CCFS/CLO
bounds do not apply), but showing the signs of the initial
crossover towards the second external-randomness domi-
nated universality class.
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In this Letter, we provide a more systematic analysis of
the scenario above by studying the MBL transition in a
quasiperiodic (QP) model with no quenched randomness.
Following the work of Aubry and André [33], the locali-
zation transition in noninteracting quasiperiodic models has
been extensively studied. More recently, it was shown that
interacting quasiperiodic models have an MBL phase [34],
and signatures of this phase have been observed in cold-
atomic experiments [35–38]. However, compared to its
noninteracting counterpart, the MBL transition in quasi-
periodic models has received little theoretical attention. Nor
have the points of similarity and difference between the
MBL transition in quasiperiodic and random models been
systematically studied. In this work, we provide a detailed
finite-size scaling analysis of the QP-MBL transition, along
with a comparison to the random MBL transition. We find
that the MBL phase is more stable for the quasiperiodic
model than for the randomone,which is opposite to the trend
for single-particle localization. This we attribute to the
effects of locally thermal rare regions that destabilize
MBL in the random system. The finite-size scaling we find
suggests that there is a nonrandom universality class of the
transition, and bothmodels are governed by this universality
class for the sizes accessible to ED. However, the random
model is beginning to cross over towards the external-
randomness-dominated universality class. Adding random-
ness to the quasiperiodic model is thus a Harris-relevant
perturbation, causing this crossover. Figure 1 shows a
schematic RG flow for this scenario. Altogether, our work
not only advances our understanding of the global structure
of quantum criticality in MBL systems, but also provides a
concrete explanation for why numerical studies on random
models see finite-size scaling collapse but obtain exponents
violating Harris-Chayes bounds.
Model.—We consider quasiperiodic and random spin

chains of the form

HQP=R ¼ J
XL−1

i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ Jz

XL−1

i¼1

SziS
z
iþ1

þ
XL

i¼1

W cosð2πkiþ ϕQP=R
i ÞSzi

þ J0
XL−2

i¼1

ðSxi Sxiþ2 þ Syi S
y
iþ2Þ; ð1Þ

where Sfx=y=zgi are spin-1=2 degrees of freedom on site i,
J ¼ J0 ¼ Jz ¼ 1, and k ¼ ð ffiffiffi

5
p

− 1Þ=2 is an irrational wave
number. For the quasiperiodic model, ϕQP

i ¼ ϕ ∈ ½−π; πÞ is
an arbitrary global phase offset such that the on-site fields
are periodic with a period that is incommensurate with the
lattice. This choice with J0 ¼ Jz ¼ 0 is the noninteracting
Aubry-André model that is localized for W > 1 [33]. For
comparison, we also study a random model in which the
phase is chosen randomly and independently on each site,

ϕR
i ¼∈ ½−π; πÞ. We choose this form for the random fields

instead of the more conventional uniform distribution
[3,13] to keep the distribution of the on-site fields constant
between the random and QP models, which enables a more
direct comparison between the two. Both models are many-
body localized for large field amplitudes W > WQP=R

c . We
add the next-nearest neighbor termswith strength J0 to break
the integrability of the models in the limit W → 0, which
allows the system to thermalize more completely within the
thermal phase even for relatively small system sizes.
Figure 2 benchmarks the location of the MBL

transition(s) in (1) using the half-chain entanglement
entropy, S, and the level statistics ratio, r. Figures 2(a) and
2(b) show S divided by ST ¼ 0.5½L logð2Þ − 1�, which is the
Page [39] value for a random pure state, in the quasiperiodic
and randommodels, respectively. The data are averaged over
1000–105 disorder samples depending on L (in the quasi-
periodic model, the averaging is over different choices for the
global phase shift ϕQP), and over the middle quarter of the
eigenstates in theSztot ¼ 0 sector for each sample (forL ¼ 16,
18 we average over the middle 200 eigenstates). In both
models, S=ST as a function ofW approaches a step function
with increasingL, going from0 in theMBLphaseswith area-
law entanglement to one in the thermal phase.
Figures 2(c) and 2(d) show the level statistics ratio [4]

r≡minfΔn;Δnþ1g=maxfΔn;Δnþ1g, where Δn¼En−Enþ1

FIG. 1. Schematic RG flow for a one-dimensional system
displaying an MBL transition. In the absence of external random-
ness, the critical fixed point is dominated by intrinsic intrasample
variations and is not constrained by Harris-Chayes bounds (pink
star). The addition of external quenched randomness is a Harris-
relevant perturbation that causes the nonrandom fixed point to
flow towards an “infinite randomness” disorder dominated fixed
point (blue star). The “detuning” parameter quantifies the ratio of
off-diagonal to diagonal couplings in the most local basis for the
coarse grained model. The MBL phase is more stable in the
nonrandom model and thus the critical flow is towards higher
detuning. We propose that the effects of external randomness
are not yet fully apparent at the sizes probed by ED studies, and
the transition in these systems is mostly still governed by the
nonrandom fixed point while beginning to cross over towards the
random fixed point (shaded oval).
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is the spacing between eigenenergy levels, in the
quasiperiodic and random models, respectively. This ratio
approaches the Gaussian orthogonal ensemble (GOE)
value r ≅ 0.53 in the thermal phase and the Poisson value
r ≅ 0.39 in the localized phase for both models.
A few points of note. First, the location of the crossing in

the entropy and level statistics data drifts towards larger W
with increasing L in both models, as is typical of all ED
studies. However, the drifting of the crossing is stronger in
the random model as compared to the QP one, suggesting
that the QP model suffers less from this finite-size effect
so the behavior we are seeing may be closer to the true
asymptotic large-L regime. Second, as a related point, the
transition is sharper (narrower in width) in the QP model.
Third, despite the functional similarities in the choice of
potentials between the two models, WQP

c < WR
c , where we

estimate WQP
c ≳ 4.25 and WR

c ≳ 5.5 (these are estimated as
lower bounds since, as always, there is no observed
crossover on the MBL side of the transition [25]). This
means that the QP model remains localized down to a
smaller value ofW, which is most likely due to the absence
of rare Griffiths events that can disrupt localization in the
random model. Indeed, within the MBL phase, the mean
entanglement is larger in the random model than in the QP
one (for comparableW=Wc), and distributions of the EE in
the random model have longer tails to large entanglement
reflecting rare events (see Supplemental Material [40]).
Variance of the half-chain entanglement entropy.—We

now study the standard deviation of the half-chain entan-
glement entropy ΔS that peaks at the MBL transition, while

it tends to 0 deep in the MBL/ETH phases [12]. Following
the prescription in Ref. [25], we parse the contributions to
ΔS due to fluctuations from sample to sample (Δsamples

S ),
from eigenstate to eigenstate within a given sample (Δstates

S ),
and from different entanglement cuts within a given
eigenstate (Δcuts

S ); see Fig 3. We use all cuts that produce
a contiguous subsystem of length L=2. Since S=ST lies
between 0 and 1, ΔS=ST can be at most 0.5.
First, note that the peak value of Δstates

S =ST is indepen-
dent of L in both the QP [Fig. 3(a)] and random [Fig. 3(b)]
models indicating a volume-law scaling,Δstates

S ∼ L, in both
and thus a substantial variance in S across eigenstates of the
same sample. This property has not been included by any
of the phenomenological RG approaches to the transition,
and it indicates that the network of resonances driving the
transition varies substantially across eigenstates of a given
sample. Also note that the peak value of Δcuts

S =ST decreases
with increasing L [Figs. 3(a) and 3(b)], indicating subvo-
lume law scaling for Δcuts

S in both models. This subvolume
law scaling limits the spatial inhomogeneity of the resonant
network of entanglement at the transition [25]. Together,
these data indicate that the intrasample critical variations
across eigenstates and entanglement cuts look qualitatively
similar between the random and QP models. In RG terms,
this suggests that, for these sizes, the intrasample finite-size
critical behavior of the two models is perhaps governed
mostly by the same fixed point (cf., Fig. 1).
On the other hand, the two models look strikingly

different when considering intersample variations. In the
quasiperiodic model, Δsamples

S is far subdominant to the

(a) (b)

(c) (d)

FIG. 2. [(a) and (b)] Average half-chain eigenstate EE divided by
the Page value ST for the quasiperiodic (a) and random (b) models.
S=ST approaches a step function at the transition, going from 0 in
the MBL phase to 1 in the thermal phase. Insets show that the
location of the crossings drifts towards larger W with increasing
system size, but the finite-size drift is stronger in the random
model. [(c) and (d)] Level statistics ratio r̄ which obeys GOE
(Poisson) distributions in the thermal (localized) phases, respec-
tively, in the quasiperiodic (c) and random (d) models. Both
diagnostics show that theMBL phase in the quasiperiodicmodel is
stable down to a lower value ofW as compared to the random one.

(a) (b)

(c) (d)

FIG. 3. Standard deviation of the half-chain EE ΔS divided by
the Page value ST , parsed by its contributions from eigenstate-to-
eigenstate (solid, circles), cut-to-cut (dashed, stars), and sample-
to-sample (dotted, triangles) variations in the quasiperiodic [(a)
and (c)] and random [(b) and (d)] models. The intrasample
variations look qualitatively similar between the two models [(a)
and (b)], suggesting that these are mostly governed by the same
fixed point at these sizes. However, the intersample variations are
growing strongly with L in the random model as it begins to cross
over towards its asymptotic disorder dominated fixed point (d),
while they are subdominant with no systematic L dependence in
the quasiperiodic model (c).
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intrasample contributions and is not growing systematically
with L [Fig. 3(c)]. This indicates that the different quasi-
periodic samples are quantitatively similar in their entan-
glement properties, and sample-to-sample fluctuations are
not the dominant source of the finite-size critical rounding
in the quasiperiodic model at these sizes.
By contrast, in the random model, the peak value of

Δsamples
S =ST grows strongly with L, which naively indicates

that Δsamples
S scales superlinearly with L [Fig. 3(d)], a trend

that is not sustainable in the asymptotic large-L limit. This
indicates that effects of intersample quenched randomness
are not yet fully manifest but growing strongly at these
small sizes. In RG terms, we interpret this as an indication
of an RG flow, due to the external randomness, that is away
from the fixed point that governs the nonrandom quasi-
periodic model and is towards the infinite-randomness
Harris-Chayes obeying fixed point that asymptotically
governs the transition for this random model (cf., Fig. 1).
Two universality classes.—We now turn to the finite-

size critical scaling properties of the MBL transition in
the two models. Figure 4 shows scaling collapse for S=ST
and Δstates

S =ST , where both quantities are fit to a form
g½ðW −WcÞL1=ν�, where Wc denotes the critical disorder
strength and ν is the finite-size scaling exponent.
We see a scaling collapse in the quasiperiodic model

with Wc ∼ 4.25 and ν ∼ 1 [Figs. 4(a) and 4(c)]. First, note
that quasiperiodic models without quenched randomness
are not subject to the CCFS/CLO bound that requires
ν ≥ 2=d. Instead, such models fall under the purview of
the Harris-Luck criterion [41], which imposes the weaker
bound ν ≥ 1=d [42]. The observed scaling exponents are

certainly already quite close to obeying this bound, consid-
ering the small sizes studied. This, combined with our
observations of finite-size drifts in the discussion surround-
ing Fig. 2, suggests that the critical behavior in the quasi-
periodic model might be close to its asymptotic large-L form
even at these sizes. If the scaling exponent continues to be
ν ∼ 1 even in the asymptotic limit, then it is clear that the
MBL transition in quasiperiodic models belongs to a differ-
ent universality class from the transition in models with
quenched randomness that must obey the CCFS/CLO
bound—this would make the external randomness Harris
relevant when added to the quasiperiodic model (cf., Fig 1).
It is an interesting curiosity that the noninteracting

Aubry-Andre transition also has ν ¼ 1, so one might be
tempted to believe that the critical properties of the
interacting quasiperiodic transition belong to the same
universality class as the noninteracting one. However, a
careful analysis (not shown) reveals that properties like the
volume-law scaling of Δstates

S across the many-body eigen-
states are absent in the noninteracting model.
Turning to the random model, we see a scaling collapse

with a larger critical disorder strength Wc ∼ 5.5 [Figs. 4(b)
and 4(d)], which is consistent with the presence of rare
Griffiths effects in the random model that can aid with
thermalization. The scaling exponent ν ∼ 1 confirms our
earlier observation that the transition in the random model
looks in many respects like it belongs to the quasiperiodic
universality class at these sizes, which are too small to feel
the full effects of the quenched randomness. Also note that
the scaling exponent is consistently slightly larger for the
random model as compared to the quasiperiodic one, which
is congruent with the theory that the random model is “en
route” to crossing over to a different disorder dominated
scaling regime with ν ≥ 2 at larger system sizes.
Summary and outlook.—We systematically examined the

MBL transition in random and quasiperiodic models, and
found that theMBLphase is stable down to a smaller disorder
strength in the quasiperiodic case. Moreover, finite-size
scaling analysis near the transition strongly suggests that
the quasiperiodic model asymptotically belongs to a different
universality class from the random one. We find scaling
exponents ν ∼ 1 for both models; however, while this
exponent may be close to its asymptotic value for the
quasiperiodic model (and in agreement with the Harris-
Luck bound), we know that the asymptotic scaling exponent
in the disordered model must satisfy ν ≥ 2=d because the
width of the finite-size scaling window is constrained to be
greater than ∼L−d=2 due to sample-to-sample fluctuations
from thequenched randomness. Indeed, the sample-to-sample
standard deviation of the entanglement entropy in the random
model clearly shows that the effects of randomness are not
fully apparent, but growing strongly, at the sizes studied, and
many critical properties of the random models at these sizes
look similar to those of quasiperiodic models. In RG terms,
the transition in both the random and quasiperiodic models

(a)

(c) (d)

(b)

FIG. 4. Finite-size critical scaling collapse for S [(a) and (b)]
and Δstates

S [(c) and (d)] data in the quasiperiodic and random
models. We see that ν ∼ 1 for both models, again suggesting that
the transition in both models is mostly governed by the same
nonrandom fixed point at these sizes. This exponent is in
violation of CCFS/CLO bounds, which must asymptotically
constrain the random model—note that ν is slightly larger for
the random model consistent with the suggestion that the effects
of quenched randomness are growing but not yet fully apparent at
these sizes. The critical Wc is larger in the random model.
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appears to begoverned by the samenonrandom fixed point for
the sizes accessible to ED, but the randommodel is starting to
cross over towards the disorder dominated fixed point.
Additionally, the entanglement structure at the critical

fixed points in RG studies [26,27] indicates that the asymp-
totic disorder dominated regime in these random models
might only be apparent in samples larger than ∼100 spins
[25], which will most likely remain inaccessible to both
experimental and numerical work. Our work indicates that
there should be a greater focus on quasiperiodic models in
finite-size studies of theMBL transition, since the asymptotic
scaling regime of the transition is likely more accessible in
such models. Further, it is possible that the MBL phase in
quasiperiodic models is more stable even in higher dimen-
sions and for longer-ranged interactions since the recent
arguments [20] on the instability ofMBLdue to rare, thermal
inclusions arising from disorder fluctuations do not apply to
quasiperiodic models. Of course, a renormalization group
study of the transition in a quasiperiodic model, if possible,
would be a helpful next step for better understanding the
properties of this newuniversality class. It is also intriguing to
ask whether the two cases studied in the present work cover
all universal possibilities for MBL transitions, or if there
are further classifications—say for example in the case of a
transition to an MBL phase accompanied by the simulta-
neous development of spontaneous symmetry breaking
[7,8,43], or for MBL transitions in models with correlated
disorder with varying degrees of correlation.
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