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We use integrability at weak coupling to compute fishnet diagrams for four-point correlation functions in
planar ϕ4 theory. The results are always multilinear combinations of ladder integrals, which are in turn built
out of classical polylogarithms. The Steinmann relations provide a powerful constraint on such linear
combinations, leading to a natural conjecture for any fishnet diagram as the determinant of a matrix of
ladder integrals.
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Introduction and main result.—Integrability is a power-
ful tool for exploring theories such as planar N ¼ 4 super-
Yang-Mills (SYM) theory at finite coupling [1–6]. It can
also assist in the computation of individual Feynman
diagrams, in scalar theories directly [7,8], or after suitably
twisting the SYM theory [9–11], or, more implicitly,
through the “hexagonalization” of correlation functions [5].
The Steinmann relations [12] provide stringent analytic

constraints on multiparticle scattering amplitudes by for-
bidding double discontinuities in overlapping channels.
They have been applied extensively in the multi-Regge
limit, e.g., in Refs. [13,14]. Their far-reaching conse-
quences outside of this limit were recognized more
recently. Combined with the dual conformal symmetry
of scattering amplitudes in the SYM theory, they severely
restrict the types of functions that can appear, making it
possible to bootstrap the six-point amplitude to five loops
[15] and the (symbol of the) seven-point amplitude to four
loops [16] with very little additional input.
In this Letter, we combine integrability and the

Steinmann relations in order to find a simple (conjectural)
result for the doubly infinite class of Feynman graphs
depicted in Fig. 1. They belong to a broader family of
conformal integrals that has attracted much attention over
the years [17–25]. The black lines in the figure provide
the position-space interpretation of the fishnet diagram, as a
contribution to the correlation function Gm;nðxiÞ ¼
hϕn

2ðx1Þϕ†n
2 ðx2Þϕm

1 ðx3Þϕ†m
1 ðx4Þi, at weak coupling, g2 ≡

λ=ð4πÞ2 ≪ 1, with ϕ1;2 being two orthogonal complex
scalars, ϕ†

1;2 their complex conjugates, and with λ ¼ g2YMNc

being the ’t Hooft coupling.
We are only interested in the first planar graph contrib-

uting to this correlator. Given the R-charge assignment, all
lines must cross each other, as in Fig. 1 with the scalars’
quartic coupling λ=ð2πÞ4 ¼ g2=π2 (cf., the ten-point graph

considered in Ref. [26]). After integrating
R
d4xk over each

intersection point xk, k > 4, and extracting a factor of the
disconnected free propagators, this very first contribution to
the correlator reads

Gm;nðxiÞ ¼
g2mn

ðx212Þnðx234Þm
×Φm;nðu; vÞ; ð1Þ

where xij ¼ xi − xj. The two conformal cross ratios are

u ¼ x214x
2
23

x212x
2
34

≡ zz̄
ð1 − zÞð1 − z̄Þ ; v ¼ x213x

2
24

x212x
2
34

≡ u
zz̄

: ð2Þ

Alternatively, we could use the strongly twisted theory
considered in Refs. [9–11]. In that theory, the gluons and
fermions are decoupled, the correlator (1) is a particular
instance of the off-shell amplitudes discussed in Ref. [11],
and Fig. 1 is the only diagram contributing to it.
The blue lines in Fig. 1 indicate a dual-graph, or

“momentum-space” (but not Fourier-transformed), inter-
pretation of the quantity as a contribution to a scattering
amplitude with four external massive momenta, p1 ¼ x23,
p2 ¼ x31, p3 ¼ x14, p4 ¼ x42, and all massless internal
lines. The Steinmann relations [12] forbid double

FIG. 1. Fishnet diagram in ϕ4 theory and its dual off-shell
(color-ordered) scattering amplitude.
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discontinuities in the overlapping channels ðp1 þ p2Þ2 ¼
x212 and ðp2 þ p3Þ2 ¼ x234. The momentum-space interpre-
tation looks like m ladders glued together. The ladder
integrals, corresponding tom ¼ 1, were computed long ago
[17] in terms of classical polylogarithms. They also belong
to a class of iterated integrals called single-valued harmonic
polylogarithms (SVHPLs) [27] with weight (number of
iterated integrations) equal to 2n, where n is the loop
number. The ladder integrals are the building blocks for the
fishnet integrals.
We find that Φm;nðu; vÞ can be written, for m ≤ n, as

Φm;nðu; vÞ ¼
�ð1 − zÞð1 − z̄Þ

z − z̄

�
m
Im;nðz; z̄Þ; ð3Þ

where Im;n is an iterated integral (also known as a pure
function) of weight 2mn. It is symmetric under 3 ↔ 4
(equivalently, u ↔ v, or z, z̄ ↔ 1=z, 1=z̄) and under z ↔ z̄,
up to a sign,

Im;nð1=z; 1=z̄Þ ¼ Im;nðz̄; zÞ ¼ ð−1ÞmIm;nðz; z̄Þ: ð4Þ
Our main result is that Im;n is the determinant of an

m ×m matrix,

Im;n ¼ detM; Mij ¼ cijLn−m−1þiþj: ð5Þ
The matrix elements are 1 × p ladder integrals Lp [see
Eq. (16)] multiplied by rational numbers,

cij ¼

8>><
>>:

1; i ¼ j;Q
i
k¼jþ1 pkðpk − 1Þ; i > j;

½cjijn→nþj−i�−1; i < j;

ð6Þ

where pk ¼ n −m − 1þ jþ k. In the following, we dis-
cuss how integrability and analyticity lead to Eq. (5).
Pentagons, hexagons, and all that.—In this section, we

present two matrix-model-like integral representations for
the diagram in Fig. 1, using the integrability of planar SYM
theory. They correspond to two different ways of factorizing
the fishnet diagram, using the so-called flux-tube picture
[2,28], where the operators are inserted along the edges of a
null Wilson loop, or the more recent approach proposed to
study three- [4] and higher-point functions [5,6].
Flux tube picture: In the flux-tube picture (Fig. 2) the

two cross ratios map to the positions σ1;2 of the operators
along two lightlike directions, z ¼ −e2σ1 , z̄ ¼ −e−2σ2 . The
correlator is viewed as a scattering of two beams on
top of the Gubser-Klebanov-Polyakov [29] background.
The beams are labeled by the scalars’ rapidities, u ¼
fu1;…; umg; v ¼ fv1;…; vng, which are conjugate to
shifts in σ1 and σ2, respectively, and are separately
conserved throughout the entire process, thanks to inte-
grability. The form factor for the creation and absorption of
a beam at the boundary of the square, or equivalently the
absolute value of the beam’s wave function, can be para-
metrized in terms of pentagon transitions P [2],

μðu; σ1Þ ¼
Ym
i¼1

μðuiÞe2iuiσ1
Ym
i<j

1

PðuijujÞPðujjuiÞ
; ð7Þ

with μðuÞ ¼ πsechðπuÞ and PðujvÞ ¼ Γðiu − ivÞ=
Γð1

2
þ iuÞΓð1

2
− ivÞ. Integrating (7) over the rapidities gives

back the free propagator for m scalar fields inserted along
the null direction,

dðσ1Þ−m ¼
�

1

eσ1 þ e−σ1

�
m
¼

Z
du
m!

μðu; σ1Þ; ð8Þ

with du ¼ Q
idui=ð2πÞ and h ffiffiffiffiffiffi

−z
p

ϕðx3Þϕ†ðx4Þi ¼ffiffiffiffiffiffi
−z

p
=ð1 − zÞ ¼ 1=dðσ1Þ. Equation (8) is also the spin-

chain scalar product in the so-called separated variables
[30]. The same expression with ui → vi, m → n, σ1 → σ2
describes the second beam.
An essential property of flux-tube scattering is that it is

diffractionless and fully factorized. Hence, the m × n grid
in the diagram can be immediately taken into account by
inserting

Q
m
i¼1

Q
n
j¼1 S⋆ðui; vjÞ, where S⋆ðu; vÞ is the trans-

mission part of the mirror two-body S matrix [31],

S⋆ðu; vÞ ¼
πg2 sinh ½πðu − vÞ�

ðu − vÞ cosh ðπuÞ cosh ðπvÞ : ð9Þ

The overall process is of order Oðg2mnÞ, in agreement with
the corresponding Feynman diagram.
Assembling all factors together, and dropping the powers

of the coupling, we obtain the flux-tube representation

Φm;n

dm1 d
n
2

¼
Z

dudv
m!n!

Ym
i

μðuiÞmþne2iuiσ1
Yn
i

μðviÞmþne2iviσ2

×
Ym
i<j

Δðui; ujÞ
Ym;n

i;j

~Δðui; vjÞ
Yn
i<j

Δðvi; vjÞ; ð10Þ

where dv ¼ Q
idvi=ð2πÞ, di ¼ dðσiÞ,

~Δðu; vÞ ¼ sinh ½πðu − vÞ�
πðu − vÞ ¼ Δðu; vÞ

ðu − vÞ2 ; ð11Þ

and dividing by the disconnected propagators matches the
normalization (3). A similar integral has been used to study
2-to-2 fermion flux-tube scattering [32].

FIG. 2. The correlator can be put inside a null square Wilson
loop, with xμ4 ¼ nμ, xμ2 ¼ n̄μ, n̄x3 ¼ −e2σ1 , nx1 ¼ −e−2σ2 , and
n2 ¼ n̄2 ¼ 0, nn̄ ¼ 1. Moving ϕ1;2 along the edges is the same as
changing the cross ratios z ¼ −e2σ1 and z̄ ¼ −e−2σ2 .
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BMN picture: An alternative representation for the same
correlator comes from the Berenstein-Maldacena-Nastase
(BMN) [33] picture. In this picture, one beam, ϕn

2 , describes
a reference state, the BMN vacuum, while the other, ϕm

1 , is
viewed as a collection ofmmagnons propagating through it.
The latter are not the familiar magnons describing spin
waves on top of the (ferromagnetic) vacuum, but some
“mirror” versions of them, mapping to insertions along the
direction ðx1; x2Þ ¼ ð0;∞Þ of the reference beam; see Fig. 3.
Each magnon ϕ1 is further decomposed into partial waves
with respect to dilatation and rotation, z ¼ ρeiϕ; each carries
a rapidity u ∈ R and bound state index a ∈ Z conjugate to
these symmetries. The planar correlator is cut halfway by the
vacuum into two triangles, which are naturally associated
with three-point functions. The amplitudes for production
and absorption of m magnons on the two triangles can be
obtained in terms of the so-called hexagon form factors
[4,34]. The next crucial ingredient is the rule for rotating
each partial wave from a triangle ending on the reference
points (0, 1, ∞) to the reference points ð0; z;∞Þ [5].
Combining the two yields the wave-function overlap

μaðu;zÞ¼
jzjm

ðz− z̄Þm
Ym
i¼1

z−iuiþ
ai
2 z̄−iui−

ai
2 μaiðuiÞ

Ym
i<j

pij; ð12Þ

with ðu; aÞ ¼ fðu1; a1Þ;…g, μaðuÞ ¼ ag2=ðu2 þ a2=4Þ2,
pij ¼ paiajðui; ujÞ, pabðu;vÞ¼μaðuÞΔabðu;vÞμbðvÞ=ðabÞ,
and Δabðu; vÞ as defined in Eq. (15) below.
Finally, the scattering between the magnons and the

vacuum results in a factor ½g2=ðu2 þ a2=4Þ�l per magnon,
where l is the so-called bridge length. Naively, l ¼ n,
since there are n vacuum lines to cross. In fact m of these
lines have been pulled out and included in the wave
function (12), as shown in Fig. 4 for m ¼ 1. This subtlety
of the cutting explains why the wave function (12) is
suppressed by 2m2 powers of the coupling and why the
bridge length is l ¼ n −m. For n ¼ 0 (l ¼ −m), the
overlap gives back the tree result, upon integration,

X
a∈Zm

Z
du
m!

μaðu; zÞ
Ym
i

ðu2i þ a2i
4
Þm

g2m
¼ jzjm

j1 − zj2m ; ð13Þ

with jzj=j1 − zj2 ¼
ffiffiffiffiffiffiffiffiffi
x23x

2
4

p
=x234 being the scalar propagator

in the conformal frame of Fig. 3 (with the numerator
absorbing the weights of the field).
Putting everything together, and normalizing by the

disconnected correlator, Eq. (13), leads to an integral for
the pure function directly,

Im;n ¼
X
a

Z
du
m!

Ym
i¼1

aiz−iuiþai=2z̄−iui−ai=2

ðu2i þ a2i =4Þmþn

Ym
i<j

Δij; ð14Þ

with Δij ¼ Δaiajðui; ujÞ and

Δabðu;vÞ¼
�
ðu−vÞ2þða−bÞ2

4

��
ðu−vÞ2þðaþbÞ2

4

�
:

ð15Þ
For m ¼ 1, this is the formula for the one magnon
contribution to the four-point function of chiral primary
operators in planar N ¼ 4 SYM [5].
Analysis: The flux tube and BMN matrix integrals

provide two formulas for the fishnet diagram which are
equivalent, in principle. In practice, it is much easier to
evaluate the latter. There are far fewer residues and the
answer appears in closed form almost immediately; the final
sum over the bound state labels is always expressible in
terms of classical polylogarithms. The infinite series of
ladder integrals (m ¼ 1) was easily reproduced in this
manner [5]. Thanks to the polynomial nature of the magnon
interaction, Eq. (15), the fishnet diagrams are equally
straightforward for reasonable values of m, n. We derived
the result (5) through m, n ¼ 1;…; 4. We double-checked
the answer against the flux-tube predictions for the few
lowest residues when m ¼ 2. The main structural property,
embodied in Eq. (5), is that the fishnet diagrams are sums of
products of m ladder integrals. This observation is the seed
for the Steinmann bootstrap program.

FIG. 3. We can decompose the correlator using triangles (also
known as hexagons). The red beam is made of m magnons,
produced on the bottom triangle and absorbed on the top one. The
correlator is the scalar product between the two wave functions.

FIG. 4. By supersymmetry, the measure μaðuÞ describes both
the one-loop gluon diagram, on the left, and the one-loop scalar
cross diagram, on the right. To get a free propagator, we must
deconvolute the scalar diagram, by acting with the box operator
□=g2 ¼ −zz̄∂z∂ z̄=g2 or, equivalently, by introducing the form
factor ðu2 þ a2=4Þ=g2 in rapidity space. A similar rule was used
[2,35,36] to transpose between maximally helicity violating and
next-to-maximally helicity violating amplitudes, in the flux tube
picture. In general, the conversion is achieved through inclusion
of a factor ½ðu2 þ a2=4Þ=g2�m, per excitation, wherem is the next-
to-maximally helicity violating degree, or number of scalars at the
cusp. This is readily seen to correct the mismatch between
l and n.
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Ladders, Steinmann, and all that.—The ladder function
Lp is defined for p > 0 by [17,20]

Lp ¼
X2p
j¼p

j!½− lnðzz̄Þ�2p−j
p!ðj − pÞ!ð2p − jÞ! ½LijðzÞ − Lijðz̄Þ�; ð16Þ

and the tree-level value is L0 ¼ ðz − z̄Þ=½ð1 − zÞð1 − z̄Þ�. In
the neighborhood of the origin in z, the polylogarithms
LijðzÞ are analytic, and Lp is manifestly single valued, a
real analytic function of z. That is, Lp has no branch cuts
under rotating z → ze2πi, z̄ → z̄e−2πi. It does have (multi-
ple) discontinuities in zz̄: under z → zeπi, z̄ → z̄eπi, the
logarithm shifts by lnðzz̄Þ → lnðzz̄Þ þ 2πi.
What is not so obvious from the representation (16) is

that Lp is also single valued in z around z ¼ 1. In fact it lies
in the class of SVHPLs Lw⃗ [27],

Lp ¼ ð−1Þp½L0;…;0;1;0;0;…;0 − L0;…;0;0;1;0;…;0�; ð17Þ
where there are p − 1 (p) 0’s before the 1 in the first
(second) term, and 2p entries in all.
Now Lp does have a discontinuity in ð1 − zÞð1 − z̄Þ:

under ð1 − zÞ → ð1 − zÞeπi, ð1 − z̄Þ → ð1 − z̄Þeπi,
Lp → Lp þ Disc1Lp; ð18Þ

Disc1Lp ¼ 2πi
ð−1Þp

p!ðp − 1Þ! lnðz=z̄Þðln z ln z̄Þ
p−1: ð19Þ

This discontinuity is compatible with the differential
equation obeyed by Lp [19],

zz̄∂z∂ z̄Lp ¼ −Lp−1; ð20Þ
zz̄∂z∂ z̄Disc1Lp ¼ −Disc1Lp−1: ð21Þ

Crucially, Eq. (18) is only a single discontinuity, due to the
Steinmann relations [12] for the momentum-space inter-
pretation of the integral.
The Steinmann relations forbid a double discontinuity in

the overlapping s and t channels of the four-point ampli-
tude for massive scattering,

DiscsDisctA4 ¼ 0; ð22Þ
where s ¼ x212, t ¼ x234. Conformal invariance places s and
t both in the denominator of u and v, so the discontinuities
now take place in the common variable ð1 − zÞð1 − z̄Þ at
z ¼ 1, and Eq. (22) becomes

Disc1Disc1A4 ¼ 0: ð23Þ
This equation holds for any conformally invariant Feynman
integral with the same kinematics, such as Im;n or Lp [37].
(Many conformal integrals, e.g., those considered in
Ref. [23], do not have a scattering interpretation, so the
Steinmann relations do not apply to them).
Generic products of ladder integrals do not obey the

Steinmann relations, because the single discontinuities in
ð1 − zÞð1 − z̄Þ multiply together to form multiple disconti-
nuities. In special combinations, the multiple discontinu-
ities cancel. For example, in the linear combination

Ln−1Lnþ1 þ rðLnÞ2; ð24Þ
the z dependence of the double discontinuity in each term is
precisely the same, and the respective normalization factors
are ½ðnþ1Þ!n!ðn−1Þ!ðn−2Þ!�−1 and ½ðn!Þ2ððn − 1Þ!Þ2�−1.
If r ¼ −ðn − 1Þ=ðnþ 1Þ, then the double discontinuity
cancels between the two terms. This value of r agrees
with the direct computation and gives the m ¼ 2 result I2;n
in Eq. (5) (r ¼ −c12c21).
For m ¼ n ¼ 2, the integral I2;2 ¼ L1L3 − 1

3
ðL2Þ2 can

be evaluated using Eq. (17). Converting the Lw⃗ functions to
a linearized form with shuffle identities, and using the
compressed notation of Ref. [22], we obtain

I2;2 ¼ 4½−L3;5 þ L5;3 þ L2;5;0 − L4;3;0 − L1;5;0;0

þ L3;3;0;0 − L2;3;0;0;0 þ L1;3;0;0;0;0�; ð25Þ
a form that agrees with Ref. [22].
The cancellation of multiple discontinuities becomes a

very stringent requirement as the number of ladders
increases. A particular term always appears with a unit
coefficient in the m×n fishnet result: Ln−mþ1Ln−mþ3…
Lnþm−1. For the square fishnet with m ¼ n, we write all
combinations of m ladders Lpi

with weight 2mn ¼ 2m2,
whose maximum index is pmax ¼ 2m − 1. Through
m ¼ n ¼ 9, there is a unique solution to the Steinmann
constraints, with 1; 2; 5; 16; 58; 231;… terms for m ¼
1; 2; 3;…. This sequence is the number of monomials in
the expansion of the determinant of the m ×m Hankel
matrix Aij with elements aiþj [38]—a strong clue to the
final formula (5).
We promote the m ×m solution to an m × n ansatz by

shifting the arguments of all Lp’s in the m ×m solution
upward by (n −m), increasing the weight from 2m2 to
2mn, and inserting arbitrary functions of n as coefficients
of these monomials. That is, we assume that there are the
same number of terms in the m × n result as in the m ×m
one, and we assume the unit coefficient in front of
Ln−mþ1Ln−mþ3…Lnþm−1. Through at least m ¼ 8, the
Steinmann constraints have a unique solution, Eq. (5).
We now show that Eq. (5) solves the Steinmann con-

straint (23) for any m, n. Notice that the coefficients cij in
Eq. (6) and the ladder discontinuities obey very similar
relations, moving along a column of the matrix Mij,

ciþ1;j ¼ pðpþ 1Þcij; ð26Þ
Disc1Lpþ1 ¼ −

ln z ln z̄
pðpþ 1ÞDisc1Lp; ð27Þ

where p ¼ n −m − 1þ iþ j is the index for the ladder Lp

that multiplies cij in Mij. Thus, under Eq. (18) every
column in M shifts by an amount proportional to the
transpose of the vector

ð1;− ln z ln z̄; ½− ln z ln z̄�2;…; ½− ln z ln z̄�mÞ: ð28Þ
The double discontinuity in detM can be computed by
summing over all possible pairs of shifted columns; the
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determinant of each such term vanishes because the
two columns are proportional. Therefore the double dis-
continuity—and similarly, all higher discontinuities—van-
ish in Im;n. Only the single discontinuity survives.
The Steinmann relations are homogeneous and do not fix

the result’s overall normalization. We check the normali-
zation recursively in m by observing that Eq. (5), although
intended to be used for n ≥ m, also holds for n ¼ m − 1,
with Im;m−1 ¼ L0Im−1;m. The factor of L0 cancels one
inverse factor in Eq. (3) for Φm;m−1, so that Φm;m−1 ¼
Φm−1;m as required for self-consistency.
Conclusions.—In this Letter we presented a well-moti-

vated conjecture for conformal four-point fishnet diagrams
in terms of ladder integrals. One may be able to test our
conjecture further, by computing the two integrability-
based formulas exactly, for any m, n, and proving their
equivalence to Eq. (5). Determinantal representations for
the integrands, like the one studied in Ref. [39], might
enable their exact integration. The conversion between the
flux-tube and BMN pictures might help to find represen-
tations of more general correlators in the separated vari-
ables. It might also shed light on the hidden simplicity of
general flux-tube integrals, and bridge the gap to the
amplitude bootstrap program [15,16,40,41].
One could apply similar techniques to related diagrams,

at the four- and higher-point level. Some alterations of
fishnet graphs, either in the bulk or at the boundary, might
admit a natural interpretation in the integrability setup, like
ones explored [10] for two-point functions. Some might
echo the magic identities relating many conformal four-
point integrals to one another and to the ladder integrals
[19]. When these integrals are glued together in various
ways, are multilinear combinations of ladder integrals still
obtained? We expect the combination of integrability and
analyticity to answer that question and lead to many more
powerful results in the future.
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