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The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are
considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking
due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the
medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters.
The effect of the granular pressure and the applied external load were also investigated. A theoretical model
is developed based on the anisotropic frictional force experienced by a slender body moving in a granular
material, to account for the translation speed of the helix. A good agreement with experimental data is
obtained, which allows for predicting the helix design to propel optimally within granular media. These
results pave the way for the development of an efficient sand robot operating according to this mode of
locomotion.
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Achieving locomotion within a fluid at low Reynolds
number requires that the mobile parts of swimmers mobilize
in a nonreciprocal motion, as stated by the Purcell’s scallop
theorem [1]. An efficient way of achieving propulsion is
through the rotation of a helical filament [2], equivalent to a
propagating wave, which breaks the inversion symmetry of
the system. In nature, the helical strategy is widely adopted
by microorganisms such as E. coli and C. crescentus [3].
Because of its fundamental importance, the helicalmotion of
E. coli has been investigated extensively. Specifically, by
using optical traps, it has been possible to assess the forces
and torques generated by E. coli in vivo [4]. From a
theoretical point of view, helical propulsion in viscous fluids
was first addressed by Lighthill using the resistive-force
theory [5]. This approximation accurately predicts the
propulsive mechanisms; however, it neglects the effect of
the long-range hydrodynamic interactions between different
parts of the body. Recently, applying slender body theories
and the regularized Stokeslet method, Rodenborn et al. have
tested these approximations [6].
Under a technological context, helical propulsion has

acted as a natural source of inspiration for the design of
self-propelled microrobots, for example, set in motion
through external magnetic fields [7]. However, the pro-
duction of helical microtails require creative strategies, for
instance, the bending of a thin bilayered film with pre-
constraints, and the direct 3D fabrication of components
through laser writing into a photoresist [8]. Despite
challenging technological issues, microrobots have facili-
tated the development of various biomedical applications,
ranging from minimally invasive surgery, to targeted drug
delivery and cell manipulation [9]. Helical motion has also
shown to be efficient for propulsion in non-Newtonian
fluids [10–12] and drop climbing [13].

Furthermore, a recent study demonstrates that helical
rotation is nicely employed by Erodium and Pelargonium
seeds to penetrate cohesionless soils [14]. Besides, the use of
the helical mode of locomotion among the animal kingdom
at a macroscopic scale remains an open-ended question.
Purcell’s scallop theorem has not been proven within

granular materials. However, on an entirely different length
scale, many animals develop propulsion strategies similar
to that of viscous fluids. For example, sand lizards and
snakes are able to propel up to twice their body length per
second both under and over a sandy surface. This is
achieved through the propagation of a transverse wave
[15]. Moreover, despite differences in the physical mech-
anisms involved, a solid friction analog to the resistive-
force theory in viscous fluid has been successfully applied
in the context of granular media to describe the undulatory
motion of sand lizards and snakes [16,17]. In addition,
Malden et al. demonstrated that this is due to the anisotropy
of the friction force, produced by a slender body moving in
a granular medium [15,18]; the frictional forces per unit of
length are greater for motion occurring perpendicular to the
body compared to along the body.
Here we investigate the physical parameters influencing

the self-propulsion of a rotating helical filament in a granular
medium and discuss the optimal helix design for efficient
propulsion. We first consider the propulsive motion of the
helix as a function of rotation speed and the influence of the
confinement pressure in themedium.The latter is determined
via the variation of the depth of the helix within the medium
and the applied external load. Subsequently, the problem of a
rotating helix is theoretically solved using a frictional
model and predictions are compared with experimental data.
Finally, considering the results, issues related to the develop-
ment of a sand-swimming helical are discussed.
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The experimental setup consists of a rotating helix placed
inside a tank filled with granular materials [Fig. 1(a)]. The
helix is made of an iron wire of diameter d ¼ 3.0 mm, has a
coil radius of R ¼ 5.0 mm, a local inclination φ ¼ 16°, and
a total projected lengthLx ¼ 58.0 mm.The tank is a parallel
pipe of 30 cm long, 20 cmwide, and 20 cm high. The tank is
sufficiently large to prevent edge effects and Janssen’s
effects [19]. The granular medium is composed of plastic
beads of diameter dg ¼ 2.0� 0.1 mm and bulk density
ρg ¼ 2.30 × 103 kg=m3. Efficient compaction of the bed is
achieved via gently tapping the tank several times prior
to each experiment, a procedure which is recognized
to achieve a near random close packing, ϕ≃ 0.63 [20].
Thus, the effective density of the granular material is
ρ ¼ ϕρg ≈ 1.45 × 103 kg=m3. For effective control of the
direction of the propeller motion, the motor providing helix
rotation is located on a linear stage, horizontally situated
outside the tank. Torque is transmitted to the helix by a thin
rod connected to the motor, with the main axis of the helix
parallel to the surface. Consequently, the granular pressure
remains constant along the trajectory of the propeller [21].
Moreover, in order to assess the propeller performance, an
external load L is applied to the system composed by the
helix, the rod and themotor through a frictionless pulley and
a pending mass. The load can be applied either favoring
(L > 0) or opposing (L < 0) motion. In summary, the
experimental configuration allows for the investigation of
three parameters, namely, the angular speed of the motor ω,
and the height of granular material h overlying the helix and
the load L. Because the material is opaque, the helix
displacement is deduced by tracking the position of the
motor outside the tank using a camera, operating at a rate
of 25 fps.
The helix position, xðtÞ, along the horizontal axis, for

different rotation speeds and constant load, grows nearly
linear with time, [Fig. 2(a)], indicating that helix motion
occurs at constant averaged speed, denoted by U. For
granular flows, an inertial number can be defined as
I ¼ _γdg=

ffiffiffiffiffiffiffiffiffiffi
P=ρg

p
, where P is the characteristic pressure

and _γ the characteristic shear rate [22]. In the range of
parameters under investigation, I < 10−3, indicating that
the flow is quasistatic with negligible inertial effects.
Subsequently, the effect rotation speed on helix velocity

is investigated [Fig. 2(b)]. Under constant depth and load, it

is apparent that U is proportional to Rω according to the
range of rotation speeds under investigation. This is con-
sistent with the absence of the inertial effect. Furthermore,
testing the influence of depth on helix motion shows that U
increases linearly with h [with all other parameters kept
constant; cf. inset in Fig. 2(b)]. This is related to the increase
in the confinement pressure at the propeller, which in turn
increases the propelling force.
Finally, when considering the effect of load on the mean

speed [Fig. 2(c)], it is noted that at low h, the helix cannot
propel unless assisted by an external load (L > 0). However,
for sufficiently large h, the helix propels, even in the
presence of an external load opposing its displacement
(L < 0). One observes the presence of a critical load Lc, at
which the helix becomes stationary. Above Lc, the helix
propels at a normalized speed U=Rω that increases with L.
The value of the critical loadLc is observed to decreasewith
h [Fig. 2(d)]. It is worth noting that the extrapolated valueFf

of the external load ath ¼ 0 (vanishing propulsion) provides

FIG. 1. Sketch of the experimental setup. The left inset presents
the helix and vector definitions used in the model.

(a) (b)

(c) (d)

FIG. 2. (a) Horizontal position xðtÞ of the helix as a function of
time for different ω, a constant load (L ¼ 1.0 N) and at a constant
depth (h ¼ 75 mm). (b) U along the x direction as a function Rω,
for a constant load (L ¼ 1.0 N) and at a constant depth
(h ¼ 75 mm). The inset shows U as a function of h, for L ¼
1.5 N and ω ¼ 10.4 rad=s. (c) Normalized helix velocity U=Rω
as a function of L for a constant ω (ω ¼ 10.4 rad=S). Blue
triangles, green diamonds, yellow squares, orange circle, and red
triangles correspond to experimental data for h ¼ 45, 55, 65, 77,
and 90 mm, respectively. Solid lines correspond to Eq. (5) taken
from the model results. (d) Black dots show the critical load Lc,
above which the helix moves as a function of h. Experimental
data are interpolated by a linear trend (black solid line). The
intersection of this linear fit with the y axis provides an estimate
of the internal resistance Ff of the system. This solid line
separates the domains of phase space, indicating if helix motion
is or is not propulsive. Open triangles indicate the critical load,
which is measured when friction is reduced by means of air
bearings.
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the force necessary to overcome both the friction on the
linear stage and the granular drag due to the helix head. In
order to separate these contributions, experiments with an
air-lubricated guiding system of negligible friction were
performed. The critical load Lc as a function of h [Fig. 2(d),
open triangles] indicates that using a nearly frictionless
system reducesFf to 2.5 N, which corresponds solely to the
head drag. This drag is known to scale as βρgR2h, with β a
coefficient accounting for both the properties of the granular
medium and the object geometry [23]. Thus, the frictional
resistance can be reduced through careful design of the form
of the objet under propulsion.
Moreover, Fig. 2(d) defines a phase diagram which

draws together all the parameters under which the helical
locomotion operates. Finally, the maximal horizontal speed
ratio U=Rω is constant (about 0.11), [Fig. 2(c)], regardless
of depth. In the following, it is shown that this maximal
speed is solely a function of friction anisotropy and helix
geometry.
A simple model is developed in order to rationalize the

experimental data. Our model is based on a generalized
Coulomb’s friction law in which the friction force expe-
rienced by a slender cylinder is broken down into compo-
nents, normal and tangential to the cylinder axis, with two
corresponding force coefficients [15,18]. The problem of
the helix motion is then described in the cylindrical
coordinates system (er, eθ, ex) [Fig. 1], and parametrized
by (r ¼ R, θ, x ¼ R tanφθ). A tangential unit vector
is introduced, et ¼ ð0; cosφ; sinφÞ, and a normal unit
vector, en ¼ ð0; sinφ;− cosφÞ, which define the direct
base (et, er, en). The local velocity of a segment of the
helix in the cylindrical base is then v ¼ ð0; Rω; UÞ and the
force per unit length experienced by each segment writes

f ¼ −Ctðev · etÞet − Cnðev · enÞen; ð1Þ

where Ct and Cn are the tangential and normal force
coefficients, respectively. These coefficients are shown to
be proportional to the granular pressure at the object
location, the granular packing fraction, and the perimeter
(of the cross section) of the slender body [15,24]. Maladen
et al. have developed a refined model based on three
constant coefficients to account for the variation of the
friction force with the angle Ψ, comprised between the
cylinder and its velocity. Here, we use the simplest fric-
tional law which allows for analytical calculations of the
propeller motion, with minimal lost of generality. Indeed,
Eq. (1) is a first approximation to the formula given by
Maladen [15] at small Ψ, with the cost of introducing an
effective Cn larger than the true value. Thereafter, Eq. (1) is
used to describe analytically the helix motion under the
assumptions of small Ψ, small fiber radius (d ≪ R), and
large helix step (R tanφ ≫ dg). From Eq. (1), each segment
of the helix experiences a force that reads

f ¼−
CtðRωcosφþU sinφÞetþCnðRωsinφ−UcosφÞenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2þðRωÞ2
p :

ð2Þ

Equation (2) implies that the sum of local forces along the
helix path only has a component in the x direction, Fx,
which writes, Fx ¼

R
L
0 f · exds, with L being the total

length of the helical filament.
In a steady regime, the propulsive force Fx is balanced

by the drag force, Fd. Fd includes all the experimental
device losses, Ff, and the external load, L; Fd ¼ Ff − L.
Thus, the helix speed verifies

Fd

LxðCn − CtÞ cosφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Rω
U

�
2

s
−
Rω
U

þ Ct tanφþ Cn= tanφ
Cn − Ct

¼ 0; ð3Þ

whereLx ¼ L sinφ is the projected helix length along the x
direction. Introducing nondimensional parameters ~U ¼
U=Rω, ~F¼Fd=LxðCn−CtÞcosφ, and ~Um¼ðCn−CtÞ=
ðCt tanφþCn=tanφÞ, Eq. (3) writes

ð1 − ~F2Þ
�
1

~U

�
2

−
2

~Um
~U
þ
�

1

~Um

�
2

− ~F2 ¼ 0; ð4Þ

which accepts an analytical solution in the form

~U ¼
~Umð1 − ~F2Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − ~F2Þð ~F2 ~U2

m − 1Þ
q : ð5Þ

Thus, the helix speed is proportional to the rotation
speed, a fact which is consistent with experiential obser-
vations [Fig. 2(b)]. It can be observed in Eq. (5) that ~U → 0

for ~F → 1 and ~U → ~Um for ~F → 0. Demonstrating that
without resistance (Fd ¼ 0), the helix reaches the maximal
speed Um ¼ ~UmRω, whereas when the resistance equals
the maximal propulsive force [Fm ¼ LxðCn − CtÞ cosφ],
the helix’s speed decreases to zero. Equation (5) also
predicts that the maximal propulsive force is proportional
to the projected helix length and to the friction force
anisotropy. In addition, the model provides the expression
of the maximal speed of the helix as a function of the
friction force coefficients Ct, Cn and the helix angle φ.
Interestingly, the expression of the maximal speed implies
that ~Um tends to tanφ if the ratio Cn=Ct tends to an infinite
value; a situation where the helix follows its own path.
Finally, theoretical predictions are compared with exper-

imental data. The solution of Eq. (5) is reported in Fig. 2(c),
indicated by solid lines with the parameter values ~F and ~Um
determined experimentally. It is observed that the exper-
imental data agree with the model and it is noted that the
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solution of Eq. (5) shown in Fig. 2(c) is similar to a linear
trend. Indeed, in the case where ~Um ≪ 1, Eq. (5) can be
elaborated upon at the first order to provide ~U ¼
~Umð1 − ~FÞ. Furthermore, the linear fit of the experimental
data in Fig. 2(d) means that the following is established as
Cn − Ct ¼ cdρghwith c≃ 24. This value can be compared
with the one determined by Guillard et al. for a cylinder
stirred into a granular medium, written as c≃ 15, and thus
consistent with our measurements [24].
According to the theoretical model, the maximal normal-

ized velocity of the helix in the bed, reached at the vanishing
load, is ~Um¼ðCn−CtÞ=ðCt tanφþCn= tanφÞ. This expres-
sion indicates the existence of a maximal value of the
normalized speed relative to the helix angle φ. It is observed
that in order to maximize the speed, the optimal value of the
helix angle φo is verified as tanφo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cn=Ct

p
. For

Cn=Ct ¼ 2, the following is obtained φo ¼ 54.7°. To check
this prediction,we3Dprinted five heliceswithdistinct angles
φ. A good agreement with the maximum speed law is
observed with a friction coefficient ratio Cn=Ct ¼ 1.6
[Fig. 3(a)]. Because of the fact that the optimal helix angle
for rapid propulsion is only dependent on the force coef-
ficient ratio, it is implied that the locomotion depth, the
packing fraction, and the radius of the helix wire do not
influence the optimum speed. However, the maximal pro-
pulsive force is an increasing function of these variables.
The experimental values of the maximal propulsive force

Fm and its maximal normalized speed ~Um produce the
coefficients Ct and Cn within this system. Indeed, the ratio
of these coefficients is expressed as

Cn

Ct
¼ 1þ ~Um tanφ

1 − ~Um= tanφ
: ð6Þ

The helix with a local slope of φ ¼ 16° was observed
experimentally to have ~Um ¼ 0.11. According Eq. (6),
these values lead to Cn=Ct ≃ 1.7, which are compatible
with measurements from Malden et al. [15]. Ct and Cn are

sensitive to granular preparation, doubling their values
from loose to close packing [15]. Our model thus accounts
for different granular preparations, with the condition of
adjusting these coefficients in accordance with the material
packing.
The total power required to move the helix is defined as,

P ¼ R
L
0 f · vds. The fraction of this power that contributes

to propulsion is, Px ¼
R
L
0 f x · vds. As a consequence, the

efficiency of the process writes η ¼ Px=P and can be
expressed analytically as a function of ~F, Cn=Ct and φ. For
Cn=Ct ¼ 1.7 and φ ¼ 16°, it was found that η reaches a
maximal value of about 4% for ~F ¼ 0. In the case where
~F ¼ 0 and Cn=Ct ¼ 1.7, η reaches a maximal value of 40%
for φ ¼ 59°. Otherwise, the power efficiency is observed to
increase with the friction coefficient ratio Cn=Ct.
These findings on helical propulsion could be used in the

development of a sand robot. For effective propulsion, the
robot must abide by two conditions. First, the maximal
propulsive force (Fm) must be larger than the resistive one
(Fd). The latter is dominated by the granular drag on the
robot’s head and can be reduced by optimization of the
head’s shape, head rotation [14], and vibration [25].
Second, the torque required to rotate the helix has to be
lower than the one required to rotate the head of the helix,
otherwise the helix will stand still.
To verify this theory, a robot respecting these constraints

has been designed and operated in granular media, as
shown in Fig. 3(b). It includes a hemispherical head
containing a battery (lithium 3.7 V 50 mAh) and a motor
(dc 4 V with a gear reduction 298:1). A helical tail of length
45 mm and local inclination φ ¼ 30° is linked to the axis of
the motor. Four pallets prevent head rotation but ensure
helix rotation. All the plastic components of the robot were
printed with a domestic 3D printer. This robot has been
tested in various granular media (sand, glass and plastic
beads) with successful propulsion in all media. The
normalized mean speed of the robots under a constant
granular pressure is observed to remain constant regardless
the grain size, consistently with the frictional approach.
This study affirms that the rotatinghelix’s forward velocity

is dependent on the rotation speed, resistive force, and helix
geometry. Based on these findings, it was possible to obtain
the optimal helical shape for propulsion in a noncohesive
medium. A proof-of-concept robot showed effective pro-
pulsion in a variety of granular materials. In conclusion, the
present study proves that locomotion in granular media is
dictated by the anisotropy of friction and the symmetry
breaking of the helical shape. Moreover, despite physical
differences between granular material and viscous fluid,
locomotion in bothmedia appears to share the same physical
origin, suggesting that the generalization of Purcell’s scallop
theorem to granular media would be possible.
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(a) (b)

FIG. 3. (a) U=Rω vs φ for Lx ¼ 58, R ¼ 5.0, d ¼ 3.0, and
h ¼ 50 mm. To compensate for head’s drag, a load L ¼ 1.2 N is
applied. The solid line shows the best fit to the experimental data
with the relation ~Um ¼ ðCn − CtÞ=ðCt tanφþ Cn= tanφÞ and
Cn=Ct ¼ 1.6. Inset: 3D printed helices of varying φ. (b) Helical
robot for motion in a granular medium. Black bar is 20 mm.
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