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The dominant deformation behavior of two-dimensional materials (bending) is primarily governed by
just two parameters: bending rigidity and the Gaussian modulus. These properties also set the energy scale
for various important physical and biological processes such as pore formation, cell fission and generally,
any event accompanied by a topological change. Unlike the bending rigidity, the Gaussian modulus is,
however, notoriously difficult to evaluate via either experiments or atomistic simulations. In this Letter,
recognizing that the Gaussian modulus and edge tension play a nontrivial role in the fluctuations of a 2D
material edge, we derive closed-form expressions for edge fluctuations. Combined with atomistic
simulations, we use the developed approach to extract the Gaussian modulus and edge tension at finite
temperatures for both graphene and various types of lipid bilayers. Our results possibly provide the first
reliable estimate of this elusive property at finite temperatures and appear to suggest that earlier estimates
must be revised. In particular, we show that, if previously estimated properties are employed, the graphene-
free edge will exhibit unstable behavior at room temperature. Remarkably, in the case of graphene, we show
that the Gaussian modulus and edge tension even change sign at finite temperatures.
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Two-dimensional (2D) materials [1] with a thickness at
the atomistic scale are highly flexible and bend quite easily.
This mechanical characteristic, in addition to other physical
and chemical attributes, has opened up an entirely new field
of research in the sciences with tantalizing applications
that range from next-generation electronics to drug deliv-
ery, energy harvesters, and structural composites [2–5].
Graphene is a prototypical crystalline 2D material, and the
lipid bilayer membrane, the key ingredient of a biological
cell, is arguably its counterpart in the soft matter world.
Phenomenologically, the elastic energy cost to bend an
isotropic 2D material can be well described by [6]

Fb ¼
Z

1

2
κbH2 þ κGK: ð1Þ

Here, κb and κG are the bending and Gaussian moduli
that, respectively, correspond to the change in energy due to
changes in the mean (H) and Gaussian (K) curvatures.
Equation (1) has been extensively used to described the

mechanics of both biological and isotropic crystalline
membranes [7]. Bending modulus is relatively simple to
estimate—be it from atomistic simulations or from exper-
imental methods [8,9]. For example, measurement of thermal
fluctuations of 2D materials provides a facile route to
estimate the bending modulus [10,11]. The typical bending
modulus (κb) of most 2D materials is small enough com-
pared to the thermal energy scale that they undulate notice-
ably even at room temperature [11,12]. For an infinitely large

membrane, the following result for the fluctuations of the
out-of-plane displacement field (h) may be derived based on
the linearized version of Eq. (1): hh2i ∝ kT=κb [13]. With
this expression, either atomistic computation of the fluc-
tuation spectra, or experimental measurements, can be used
to estimate the bending modulus [11,13]. In sharp contrast,
however, the estimation of the Gaussian modulus is quite
difficult. For example, the aforementioned thermal fluc-
tuation spectra result is independent of the Gaussian modu-
lus. This is a consequence of a more general principle—the
so-called Gauss-Bonnet theorem [14] which states that the
integration of the Gaussian curvature over the surface with-
out an edge is invariant under any deformation that is not
involved with topological transformations. To quote Hu et al.
[15], this is “both a blessing and a curse.” That is, we can
safely ignore the contribution due to the Gaussian curvature
in several practical situations unless there is a change in
topology. However, for this very reason, the Gaussian
modulus is notoriously difficult to measure. To understand
this, it is worthwhile to mention some of the physical
processes where it does matter: pore formation, structural
deformation of a finite ribbon, cellular uptake of macro-
molecules, and cell fusion and fission are some examples
(Fig. 1). However, there are no clear experimental or simu-
lation procedures that can readily use these aforementioned
events to estimate this elusivematerial property.Whilemost of
the experimentally measured values of the Gaussian modulus
for lipid membranes are reported for monolayers [16–22],
there are no experimental or computational estimates of the
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Gaussian modulus for crystalline membranes at nonzero
temperatures.
Despite the attendant complexities of the endeavor, numer-

ous attempts have been made to evaluate the Gaussian
modulus of biological membranes [15,18,21–23]. Here, we
highlight the work of Deserno and co-workers [15,23] who
provide a thoughtful review of the subject and propose a
strategy to estimate this property for lipid bilayers [24]. Using
coarse-grained molecular dynamics (MD), Hu et al. [23]
monitored the tendency of a flat finite size membrane patch
to close and form a vesicle in order to reduce the total edge
energy.A theoretical result is then used to link this probability
to the Gaussian modulus. Despite the pioneering nature of
work by Deserno and co-workers [15,23], several issues
pertaining to this approach suggest that another independent
estimate is warranted. The theoretical model by Deserno and
co-workers [15,23] is a ground-state model (i.e., zero Kelvin)
while simulations are performed at finite temperature and
accordingly disregard entropic corrections, and thus, there is
an inconsistency between their atomistic simulations and the
matching theoretical model. The authors carefully choose
very small size membrane patches to minimize the effect of
thermal fluctuations. Nevertheless, the sensitivity of their
results to a finite temperature correction is not immediately
obvious. Furthermore, since rather small patches must be
used, there is also a likelihood that their estimates are plagued
by size effects. Even with a small patch, while surface
fluctuations may be minimized, the edge fluctuations may
still be large (aswewill show in this work). Finally, the size of
thepatch in simulations is restricted bya rangeof edge tension
and the Gaussian modulus, and thus, in case any of these
properties turn out to be beyond these ranges, the correct
estimations cannot be obtained by the initially imposed
patch size.
In the context of graphene, a couple of key works have

recently appeared in the literature. Wei et al. [25], using
quantum calculations, estimated the Gaussian modulus at
zero Kelvin (∼ − 1.52 eV) by comparing the potential

energy of graphene for different topological structures.
Davini et al. [26] used a rather interesting approach where
they derived a continuum model linked with the second-
generation reactive empirical bond-order (REBO) inter-
atomic potential [27] to extract the Gaussian modulus at
zero Kelvin and find its value to be around −1.62 eV.
These approaches exclude entropic contributions. As we
will show, entropic effects make a decisive contribution to
the physically relevant finite temperature Gaussian modu-
lus and edge properties. In short, the quest for the true
Gaussian modulus still remains an active research topic.
We propose an entirely different approach from the ones

in the literature and show that monitoring the thermal
fluctuations of the edge of a 2D material provides all the
requisite information necessary to determine the elusive
Gaussian modulus and the edge tension. Inspired by an
earlier work of Gommper and Kroll [28], we derive the
necessary theoretical relations and carry out MD simulations
to yield, arguably, the first reliable finite temperature
estimates of these properties. While our approach predicts
values well within the experimental range, they are markedly
different from past works. In particular, we show that the
currently estimated values for the Gaussian modulus can
lead to physical inconsistencies at room temperature—e.g.,
in the case of graphene, unstable edge behavior will ensue.
An additional key outcome of the work is that our relations
for the edge fluctuations provide a rather reliable metric to
bracket the physically plausible range of these properties.
Thermal fluctuations of a free edge—theoretical

model.—Consider an open finite 2D elastic membrane,
with a smooth and orientable surface Ω, enclosed by a
space curve ∂Ω that represents the edge of the surface. Let
ψ and ϕ be the areal and lineal energy density, respectively,
of the surface and the edge. Up to quadratic order, ψ is
simply the integrand of Eq. (1). Then, the total elastic
energy can be split into two parts as

F ¼ Fb þ
Z
∂Ω

ϕ: ð2Þ

The edge energy density can be expressed as [29,30]
ϕ ¼ ϕ0 þ 1

2
κsðκ2n þ κ2gÞ þ � � �, where ϕ0 is the so-called

edge (line) tension. Further, κn, κg are the normal and
geodesic curvatures, respectively, and κs can be defined as
the bending modulus of the edge.
Minimization of the total elastic energy then leads to the

ground-state Euler-Lagrange equations [not shown, see
Supplemental Material (SM), Section 2, Eqs. (9, 10)
[31]] and a rather complicated set of boundary conditions
on the free edge [29]�
L∇SψK −

1

2
∇SψH − 2H∇SψK

�
· νþ ϕκnκ

2
n − ðψKτgÞ0

þ ϕκgκnκg − ϕκn − ϕ00
κn ¼ 0 ð3aÞ

1

2
ψH þ ψKκn þ ϕκnκg − ϕκgκn ¼ 0; ð3bÞ

FIG. 1. Gaussian modulus and edge properties play a central
role in physical processes that involve topological changes or
deformation of an open edge, e.g., pore formation, structural
deformation of a finite nanoribbon, cell fission and fusion.
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and fh ¼ 0;∇Sh · ν ¼ 0g for constrained edges. In Eq. (3),
all the subscripts denote derivatives and the superscript 00,
denotes a second derivative with respect to the arc length of
the free edge. Also, L is the curvature tensor, ∇S denotes
the surface gradient operator and ν is the unit vector, normal
to the edge curve and tangent to the surface [see SM,
Section 2, Eqs. (2, 3) [31]].
As usual, the partition function Z is defined asR
e−F½h�=kTD½h� where D½h� denotes path integration over

all possible functions, hðxÞ, that satisfy the free boundary
conditions in Eq. (3) or the constrained edge conditions.
While the statistical mechanics analysis of thermal fluctu-
ations is relatively simple for an infinitely large elastic
sheet, the path integral is difficult to evaluate in the present
case due to the rather complicated boundary conditions at
the edge. Therefore, it is worthwhile to briefly touch upon
the infinite sheet case (i.e., periodic boundary conditions)
to connect with the typical practice in the literature. In that
scenario, the boundary conditions at the edge vanish and
the displacement correlation in terms of the Fourier vector
q can be calculated analytically to be hhðxÞhðx0Þi ¼P

qðkTeiq·jx−x0j=L2κbjqj4Þ. This expression has tradition-
ally been used to extract the bending stiffness of elastic
membranes from either experiments or molecular dynamics
simulations [10,11,40]. In this Letter, we will derive the
displacement correlation function for a free edge at a finite
temperature and show that both the Gaussian modulus and
edge tension can be obtained from the derived result [41].
In what follows, we choose a simplified geometry to carry
out our analysis. In principle, we can choose any geometry
and the main consideration for a particular configuration
is the ease of carrying out the atomistic simulations.
Accordingly, we consider a rectangular membrane with a
free edge of size L and a clamped (opposite) edge. The
objective is to study the fluctuation behavior of the mem-
brane at (and near) the free edge. In order to make analytical
progress, we model this case with a semi-infinite sheet with
one free edge. The semi-infinite sheet is embedded in the
domain Ω1 ≔ ½x ¼ ðx; yÞ;−∞ < x < 0;−∞ < y < ∞�,
with a free edge at ∂Ω1 ≔ ½x ¼ ð0; yÞ;−∞ < y < ∞�.
Therefore, we have periodic boundary conditions only in
the y direction. The derivation is long and tedious; however,
the final result is exceptionally simple which we quote here
and leave it to the reader to pursue the details in the SM,
Section 4, Eqs. (38–61) [31]. At the edge x ¼ x0 ¼ ð0; yÞ,
the displacement self-correlation is simply

hjhðqÞj2i ¼ 2 kTκb
Lq2½2κbðϕ0 − 2qκG þ q2κsÞ − qκ2G�

; ð4Þ

which, unlike the infinite membrane case, contains the
contributions from not only the bending modulus κb, but
also the Gaussian modulus κG as well as the edge properties
ðϕ0; κsÞ [42].
MD simulations of a fluctuating free edge.—In order to

use the derived fluctuation relations in the preceding

paragraphs, we perform MD simulations on graphene
monolayer and three types of lipid bilayers. The details
of the simulation approach, force field used, the manner in
which the edge conditions were imposed and other details
are in the SM, Section 5 [31]. For lipid bilayers, calcu-
lations were performed with the freely available software
GROMACS, using the coarse-grained Martini force field
[43,44]. We chose three types of lipid: DPPC, DOPC, and
DOPE.We expect different properties for the three bilayers,
and since any particular one is fine for “proof-of-concept,”
we focus on the details of only DPPC. For the others, the
results can be found in the SM, Section 5 [31]. We perform
MD simulations of monolayer graphene using LAMMPS

[38]. The second-generation REBO potential [27] is used
for the multibody C–C interactions. In graphene, unlike
lipid bilayers, the in and out-of-plane deformations are
coupled in a nonlinear fashion. MD simulations of infinitely
large graphene monolayers show that at finite temperature,
depending on the size of the sheet and the temperature, they
exhibit marked stiffening [11,45]. To minimize the effects
arising from nonlinearities, we perform MD simulations
under NPT ensemble—zero pressure—to relax the in-plane
stress field. Further details related to graphene MD simu-
lations are in the SM, Section 6 [31].
Results and discussions.—We fit our theoretical expres-

sion in Eq. (4) to the data from MD simulations. The details
on transforming theMDdata into Fourier space can be found
in the SM, Section 7 [31]. Results are shown in Fig. 2 for lipid
bilayers. The fluctuation spectra can be described by a power
law as hjhðqÞj2i ∝ 1=qη. For long wavelength fluctuations,
the dominant term is the edge tension, as it couples with q2,
while at short wavelength fluctuations, the edge modulus κs,
coupled with q4 becomes the dominant term. Unfortunately,
there are no reports on the edge modulus of lipid membranes
in the literature. For the DPPC lipid membrane, we obtained
the bending modulus κb ¼ 36 kT and the edge tension is
estimated as ϕ0 ¼ 14.4 kT=nm, which is about an order of

FIG. 2. We extract the Gaussian modulus and edge properties
from MD simulations for lipid membrane DPPC by fitting our
analytical results. Our fit is found to be more sensitive to edge
tension compared to the edge moduli, and hence, the green
dashed line yields a better fit.
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magnitude larger than what has been obtained by Hu et al.
[15]. In the intermediate region, the Gaussian modulus,
determines the decaying trend of the fluctuations, i.e., the
value of η and how fast the fluctuations decay. Interestingly,
the Gaussian modulus does not have significant impact on
the overall fluctuations, but strongly affects only its rate of
decay with respect to thewave number and is estimated to be
κG ¼ −28.8 kT for the DPPC lipid membrane. Our fitted
parameters are, indeed, in the range of reported data for lipid
membranes [16–22], but slightly different from those
reported by Hu et al. [15]. We have investigated the proper-
ties for other types of lipids as well (SM, Section 5 [31]).
While our estimates on Gaussian modulus and edge tension
for DPPC are in reasonable agreement with existing values
in the literature, reported values of these properties for
DOPC and DOPE in the literature, cannot explain our MD
observations.
The results for the fluctuations of a graphene edge are

shown in Fig. 3. Existing values for graphene mechanical
properties in the literature are reported at zero Kelvin.
Because of nonlinearities, graphene monolayers exhibit
stiffening at finite temperatures. Similarly, the Gaussian
modulus and edge properties also get renormalized at finite
temperatures. In fact, a free edge, influenced by edge forces,
sustains ground-state nonzero deformations, that arise from
the competition between in-plane stretching energy and the
compressive edge force. The effect of the in-plane stretching
energy can be implicitly captured by the edge modulus κs
as well as ϕ0, representing the apparent edge tension. The
variation of the edge modulus appears to have a negligible
effect on the fitting of the MD results. Our results show that,
at finite temperatures, the apparent edge tension—unlike its
bare value at zero Kelvin ∼ − 10 eV=nm [46]—is positive
with a value of∼1.2 ðeV=nmÞ and, thus, provides stability to
the edge. This is in sharp contrast to the negative edge tension
that is believed to exist for graphene edges. For the Gaussian
modulus also, we obtained κG ∼ 1 kT ∼ 25 meV, which
is positive and much larger than its predicted bare value at
zero Kelvin∼ − 1.52 to−1.62 eV [25,26]. Our results bring
to fore that the negative value is not possible at finite
temperatures. In fact, we could not get a good fit with the

reported negative values of the Gaussian modulus in the
literature. Indeed, the best fit is obtained with rather small,
positive values for the Gaussian modulus. The discrepancies
between the zero and finite temperature Gaussian modulus
and edge tension clearly reveal that entropic effects are
significant. Even if we were to use the currently accepted
properties, they would be incapable of explaining our
simulations of the edge fluctuations (Fig. 4) and, in fact,
demonstrate unphysical instability at finite temperatures.The
red dashed line in Fig. 4 is obtained by substituting the zero-
Kelvinvalues into Eq. (4). Note that the zero-Kelvin negative
values of the edge tension and Gaussian modulus, result is a
singular point q⋆ where the denominator of Eq. (4) becomes
zero. For all values of q < q⋆, the correlation function
becomes negative, which is an indicator of the instability
of thermal fluctuations for long wavelengths.
While not practical for lipid bilayers, at least in the

context of graphene, it is of interest to investigate whether
the Gaussian modulus does show a transition towards
negative values as the temperature is lowered. As alluded
to earlier, two notable (and congruent) estimates exist for
the zero Kelvin value [25,26]. Accordingly, we have also
explored the temperature dependency of the Gaussian
modulus and edge properties. The detailed results appear
in the SM, Section 8 [31]. Our simulations suggest that, as
the temperature decreases below room temperature, these
properties approach their zero Kelvin values, and in
particular, the Gaussian modulus does transition to a
negative value. We remark that (as discussed in the SM,
Section 8 [31]) our approach has limitations in that it cannot
be used (in its present form) at ultralow or very high
temperatures. Future work extending our framework to
incorporate stretch-bending coupling may partially mitigate
this limitation.
In summary, our work provides a new and facile route—

for the first time—to extract the edge properties and
Gaussian modulus for both fluid and solid 2D membranes
from fluctuations spectra. The obtained insights lay bare

FIG. 3. Fluctuations of the free edge of graphene monolayer
with size of L ¼ 8.4 nm.

FIG. 4. This figure shows the predictions of edge fluctuations
of graphene if the currently accepted values of Gaussian modulus
[25] and edge properties [46] in the literature are used. As is
evident, our atomistic simulations cannot be captured by those
properties.
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some of the physical inconsistencies and paradoxes in the
currently accepted mechanical properties for lipid bilayers
and graphene.
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