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We compute the orbital angular momentum Lz of an s-wave paired superfluid in the presence of an
axisymmetric multiply quantized vortex. For vortices with a winding number jkj > 1, we find that in the
weak-pairing BCS regime, Lz is significantly reduced from its value ℏNk=2 in the Bose-Einstein
condensation (BEC) regime, where N is the total number of fermions. This deviation results from the
presence of unpaired fermions in the BCS ground state, which arise as a consequence of spectral flow along
the vortex subgap states. We support our results analytically and numerically by solving the Bogoliubov–de
Gennes equations within the weak-pairing BCS regime.
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Quantized vortices are a hallmark of superfluids (SFs) and
superconductors. These topological defects form in response
to external rotation or a magnetic field and play a key role in
understanding a broad spectrum of phenomena, such as
the Berezinskii-Kosterlitz-Thouless transition in two-
dimensional (2D) SFs [1,2], superconductor-insulator tran-
sitions [3–5], turbulence [6], and dissipation [7,8]. In
fermionic s-wave paired states, the structure of the ground
state and low-lying excitations of an axisymmetric singly
quantized vortex has been established through analytical and
numerical studies in both the strong-pairing regime [where
the SF phase is understood as a Bose-Einstein condensate
(BEC) of bosonic molecules] and in the weak-pairing
Bardeen-Cooper-Schrieffer (BCS) regime. In the BEC
regime, the microscopic Gross-Pitaevskii equation provides
a reliable framework [9,10], while in the BCS regime, the
(self-consistent) Bogoliubov-deGennes (BdG) theory is key
in identifying the structure of the ground state [11,12] and
the spectrum of subgap fermionic excitations [13].
Multiply quantized vortices (MQVs) have, however, not

received much attention. Generically in a homogeneous bulk
system, the logarithmic repulsion between vortices, which
scales as the square of the vortex winding number k,
energetically favors an instability of a multiply quantized
vortex into separated elementary unit vortices [14].
However, MQVs are of interest since, under certain circum-
stances, the interaction between vortices is not purely
repulsive and can support multivortex bound states, at least
as metastable defects. This can happen, for instance, in type-
II mesoscopic superconductors, where MQVs have been
predicted [15] and experimentally observed [16–19]. In
addition, it has been argued that MQVs are expected to
be energetically stable in multicomponent superconductors
[20,21] and in chiral p-wave superconductors [22,23]. In
fermionic SFs, a doubly quantized vortex was predicted [24]

and observed in 3He-A [25]. It has further been argued that
fast rotating Fermi gases trapped in an anharmonic potential
will support an MQV state [26–28]. Similar vortex states
have been created in rotating BEC experiments [29–32].
Surprisingly, as we demonstrate in this Letter, there is a

fundamental difference between a singly quantized vortex
(jkj ¼ 1) and an MQV (jkj > 1) in a weakly paired
fermionic s-wave SF. This difference is manifested most
clearly in the orbital angular momentum (OAM) Lz, as
illustrated in Fig. 1. At zero temperature in the BEC regime,
a microscopic Gross-Pitaevskii calculation predicts
Lz ¼ ℏNk=2, where N is the total number of fermions.
Intuitively, this corresponds to a simple picture where an
MQV induces a quantized OAM k per molecule. For an
elementary vortex, this result also holds in the BCS regime,

FIG. 1. Summary of main result: (a) for an elementary vortex
(k ¼ 1), the fermionic spectrum has a vanishing spectral asym-
metry and thus, all fermions are paired in the ground state,
resulting in Lz ¼ ℏN=2 in the BCS regime. (b) In stark contrast,
for an MQV (k ¼ 2 pictured here as an example), midgap states
confined to the vortex core induce a nontrivial spectral asym-
metry, which leads to unpaired fermions in the ground state.
These reduce Lz from its naïve value ℏN by an amount that scales
quadratically with the splitting between the red branches.
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as confirmed within the self-consistent BdG framework
[11,12]. As we show in this Letter, for vortices with jkj > 1,
however, the BCS ground state contains unpaired fermions
which carry OAM opposite to that carried by the Cooper
pairs, thereby significantly reducing the total Lz from its
BEC value by an amount ∼ðkFξÞ2, where kF is the Fermi
momentum and ξ the coherence length. While the propor-
tionality constant is nonuniversal and depends on the vortex
core structure, the scaling with kF and ξ is robust, being
independent of any boundary effects.
To derive our main result, we consider a 2D [33] s-wave

paired SF in the weak-pairing BCS regime at zero
temperature within the BdG framework. The mean-field
Hamiltonian in the presence of an axisymmetric MQV
with winding number k is Ĥ ¼ R d2rΨ†½−∇2=2þ VðrÞ−
μ�τ3Ψþ R d2rΨ†ΔðrÞðeikφτþ þ e−ikφτ−ÞΨ, where the
Nambu spinor Ψ ¼ ðψ↑;ψ

†
↓ÞT satisfies fΨiðrÞ;Ψ†

jðr0Þg ¼
δijδðr − r0Þ. Here, τi are Pauli matrices, τ� ¼ ðτ1 � iτ2Þ=2,
ℏ and the elementary fermion mass are set to unity, and μ is
the chemical potential. In principle, ΔðrÞ should be
determined self-consistently, but since our results depend
only weakly on its form, we use a fixed pairing term that for
our numerical analysis is taken to be ΔðrÞ ¼ Δ0 tanh ðr=ξÞ,
where ξ ¼ kF=Δ0, and Δ0 is the BCS gap.
Because of the pairing term, neither the total particle

number N̂¼R d2rΨ†τ3Ψ nor the OAM L̂z¼
R
d2rΨ†

ð−i∂φÞΨ commutes with Ĥ, and so neither are separately
conserved. Instead, as pointed out in [34,35], the generalized
OAM operator L̂ ¼ L̂z − kN̂=2 generates a symmetry and
thus, the BdG ground state and all quasiparticle excitations
carry a sharp L̂ quantum number. More generally, in a
chiral SF with pairing symmetry ∼ðpx þ ipyÞν and with
an MQV, the conserved operator is L̂z − ðkþ νÞN̂=2 (see
Supplemental Material [36]). While the OAM of vortex-free
chiral paired SFs (k ¼ 0) was analyzed in [40–42], here, we
focus on s-wave SFs (ν ¼ 0) with MQVs, noting that our
results readily generalize to chiral states with MQVs.
Physically, L̂ measures the deviation of OAM in the BCS

ground state from its expectation value LBEC
z ¼ kN=2 in the

BEC regime (with N ¼ hN̂i). The suppression of Lz in the
BCS regimewill hence be reflected in the eigenvalueL of L̂,
evaluated in the ground state of the BdG Hamiltonian. We
consider a disc geometry with Dirichlet boundary conditions,
i.e., Vðr < RÞ ¼ 0 and Vðr > RÞ ¼ ∞. Expanding the
fermionic operators in a single-particle basis as ψσðrÞ ¼P

n;lanlσΦnlðrÞ, where Φnl satisfies ½−∇2=2þ VðrÞ − μ�
ΦnlðrÞ ¼ ϵnlΦnlðrÞ, the Hamiltonian becomes

Ĥ¼
X

l
n;n0

 
a†n;lþk↑

an;−l↓

!
T
 
ϵn;lþkδn;n0 ΔðlÞ

n;n0

ΔðlÞ�
n;n0 −ϵn;−lδn;n0

!�an0;lþk↑

a†n0;−l↓

�

;

ð1Þ

with ΔðlÞ
n;n0 ¼

R
d2rΦ�

n;lþkΔðrÞeikφΦ�
n0;−l, and where n, l are

the radial and angular momentum quantum numbers, respec-
tively. Denoting the single-particle Hamiltonian matrix as
HðlÞ, particle-hole (PH) symmetry connects the different l
sectors through HðlÞ� ¼ −CHð−l−kÞC−1, and the spectrum is
hence PH symmetric about l ¼ −k=2.
The ground state of the BdG Hamiltonian is constructed

using a generalized Bogoliubov transformation [43,44]
whose main steps we present here (see Supplemental
Material [36] for details). First, we regularize the BdG
Hamiltonian HðlÞ by introducing a cutoff M ≫ 1 on n, n0.
Generically, HðlÞ will have a different number of positive

and negative eigenvalues, MðlÞ
þ and MðlÞ

− , respectively. The
(unitary) Bogoliubov transformation is then written as

 
bðlÞm

dðlÞ†m̄

!

¼
XM

n¼1

 
SðlÞ1;mn SðlÞ2;mn

SðlÞ3;m̄n SðlÞ4;m̄n

!� an;lþk↑

a†n;−l↓

�

; ð2Þ

where m¼1;…;MðlÞ
þ , m̄¼1;…MðlÞ

− , and MðlÞ
þ þMðlÞ

− ¼
2M. The Bogoliubov operator bðlÞm annihilates a quasipar-

ticle with positive energy EðlÞ
m , L charge [45] lþ k=2, and

spin ↑. Alternatively, by PH symmetry, we can interpret it
as the creation operator for a spin ↓ state with negative

energy −EðlÞ
m and L charge −l − k=2. In addition, we

introduce the operator dðlÞm̄ that creates a spin ↑ state with

negative energy EðlÞ
MðlÞ

þ þm̄
and L charge lþ k=2.

In terms of these operators, the ground state jBCSi∼ ⊗l
jBCSil is defined as the vacuum for all positive

energy quasiparticles and thus satisfies bðlÞm jBCSi ¼ 0

and dðlÞm̄ jBCSi ¼ 0. For systems with MðlÞ
þ ¼ MðlÞ

− , the
ground state jBCSi closely resembles a Fermi sea with
all negative energy states occupied

jBCSi∼ ⊗l

YM

m¼1

bðlÞm
YM

m̄¼1

dðlÞm̄ j0i; ð3Þ

where j0i is the Fock vacuum for an;lσ. This ground state
can be understood in terms of Cooper pairs, where spin ↑
quasiparticles with L charge v ¼ lþ k=2 (created by dðlÞ)
are paired with quasiparticles of the opposite spin ↓
and with the opposite L charge −v (created by bðlÞ).
Reexpressing the quasiparticle operators in terms of
elementary fermions, we find a familiar exponential form

jBCSil ¼ exp ða†n;lþk↑K
ðlÞ
n;n0a

†
n0;−l↓Þj0i, where KðlÞ is an

M ×M matrix (derived in Supplemental Material [36]),
and the sum over n, n0 is implicit. Since bðlÞ and dðlÞ carry
opposite L charge, the ground state Eq. (3) has a vanishing
L eigenvalue.

When MðlÞ
þ ≠ MðlÞ

− , however, the ground state is no
longer given by Eq. (3) since there will exist an imbalance
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between the number of quasiparticles with L charge
lþ k=2 and with L charge −l − k=2. This mismatch is
quantified by the spectral asymmetry of the energy spec-

trum ηl ¼
P

msgnðEðlÞ
m Þ ¼ MðlÞ

þ −MðlÞ
− , where fEðlÞ

m gm∈N
are the eigenvalues of HðlÞ. In order to demonstrate that the
presence of a nontrivial ηl leads to unpaired fermions in the
ground state, we perform a judiciously chosen unitary
rotation on an;lσ to a new basis of fermions ~aj;lσ via a
conventional (non-Bogoliubov) rotation which does not
mix creation and annihilation operators (see Supplemental
Material [36]). Through a separate unitary rotation, we
simultaneously transform the Bogoliubov operators bðlÞ,
dðlÞ into a new basis ~bðlÞ, ~dðlÞ. The new fermions ~a and
Bogoliubov quasiparticles ~b, ~d are related through a
Bogoliubov transformation which, as always, takes the
schematic form ~b ¼ U ~aþ V ~a†, where the matrix-valued
coefficients U, V satisfy jUj2 þ jVj2 ¼ 1. Following [44],
we find that the preceding transformations naturally dis-
tinguish between operators for which either U vanishes
exactly: U ¼ 0, V ¼ 1 (occupied levels), or V vanishes
exactly: V ¼ 0, U ≠ 0 (empty levels), with the remaining
operators, for which, both U, V ≠ 0, describing paired
levels. In the new basis, the ground state is superficially
similar to Eq. (3) since it can be expressed as

jBCSi∼ ⊗l

Y0

m

~bðlÞm
Y0

m̄

~dðlÞm̄ j0i: ð4Þ

Importantly, however, the restricted products here run only
over paired and occupied levels. Bogoliubov operators ~b, ~d
for empty states, which are linear superpositions of ~a’s,
annihilate the bare vacuum j0i and are thus disallowed in
Eq. (4). Conversely, occupied states contribute to Eq. (4)
but since these states create unitarily rotated fermions with
certainty ~b, ~d ∼ ~a†, they do not participate in pairing. The
expression (4) is, in turn, equivalent to (see Supplemental
Material [36] for details)

jBCSil ¼
 
YM

ðlÞ
↑

i¼1

~a†i;lþk↑

! 
YM

ðlÞ
↓

i¼1

~a†i;−l↓

!

× exp

 
XM

j>MðlÞ
↑

XM

j0>MðlÞ
↓

~a†j;lþk↑K
ðlÞ
j;j0 ~a

†
j0;−l↓

!

j0i; ð5Þ

where MðlÞ
↓ and MðlÞ

↑ are the number of occupied (and also

empty) ~bðlÞm and ~dðlÞm̄ levels, respectively. In terms of these

parameters, the spectral asymmetry ηl ¼ 2ðMðlÞ
↓ −MðlÞ

↑ Þ,
with MðlÞ

↑;↓ ¼ maxð0;M −MðlÞ
þ;−Þ.

The exponential part of jBCSi explicitly illustrates the

singlet pairing, while MðlÞ
σ ≠ 0 signals the presence of

unpaired fermions in the ground state. The eigenvalue of L̂
can now be obtained directly from Eq. (4) by summing the
individual contributions of the filled quasiparticle states and
noting that ~bðlÞ, ~dðlÞ carry the same L charges as bðlÞ, dðlÞ.
While contributions from the paired levels cancel out, the
occupied levels lead to

L ¼ −
1

2

X

l

�

lþ k
2

�

ηl: ð6Þ

Alternatively, this equation can be derived directly from
Eq. (5) and has previously appeared in the literature in the
context of chiral SFs [40,41], where k is replaced by the
chirality ν. Physically, Eq. (6) quantifies the contribution of
unpaired fermions to the OAM.
The physics originating from unpaired fermions in the

ground state of a paired state was previously identified and
studied in nuclear physics [44], FFLO superfluids [46],
and chiral superfluids paired in higher partial waves
[40–42,47,48]. We now demonstrate that for a weakly
paired s-wave SF with an MQV, a nontrivial ηl and the
associated unpaired fermions arise as a consequence of
vortex core states.
In the BCS regime, the spectrum of the vortex core (vc)

states for a singly quantized vortex jkj ¼ 1 was calculated
analytically by Caroli–de Gennes–Matricon (CdGM) [13]

who found a single branch EðlÞ
vc (per spin projection) that

crosses the Fermi level. This branch is PH symmetric

with respect to itself EðlÞ
vc ¼ −Eð−l−1Þ

vc and at low energies,

(Evc ≪ Δ0) behaves linearly EðlÞ
vc ¼ −ω0ðlþ 1=2Þ, where

the minigap ω0 ∼ Δ0=ðkFξÞ. By numerically diagonalizing
HðlÞ for k ¼ 1, we find that ηl ¼ 0 for all l, and hence, there
are no unpaired fermions in the BCS ground state of an s-
wave paired SF with an elementary vortex. Equation (6)
then predicts L ¼ 0, and thus, the ground state expectation
value Lz ¼ N=2, which agrees with self-consistent BdG
calculations [11]. The physics here is analogous to that of
weakly paired pþ ip SFs, where there is a single PH
symmetric edge mode that carries no OAM [40,49,50].
For an MQV with winding number k, the CdGM

method can be generalized and the vortex core spectrum
analytically calculated within the BdG framework (see
Supplemental Material [36]). In agreement with an argu-
ment relating the number of vortex core branches to a
topological invariant [51], we find that jkj branches (per
spin projection) cross the Fermi level. At low energies,
these branches disperse linearly EjðlÞ ¼ −ω0ðl − ljÞ,
where j ¼ 1;…; k indexes the branches, and the lj’s are
the angular momenta at which the branches cross the Fermi
level. This is consistent with results obtained by numeri-
cally diagonalizing the BdG Hamiltonian HðlÞ [for k ¼ 2,
see Fig. 2(a)] and with previous results on MQVs in
superconductors, obtained through quasiclassical approx-
imations [51–53] and numerical simulations [54–57].
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Since in the BEC regime, the spectrum is completely
gapped for any k, we find ηl ¼ 0 for all l and thus, the
ground state OAM is exactly Lz ¼ kN=2. On the other
hand, in the weakly paired regime, the energy spectrum of
an MQV exhibits a nontrivial spectral asymmetry. We
consider the case k ¼ 2 first [Fig. 2(a)], where there exist
two vortex core branches with linear dispersions at low

energies EðlÞ
vc;� ∼ −ω0ðl − l�Þ, with lþ > l−. Under PH

symmetry, these branches are exchanged as EðlÞ
vc;þ ¼

−Eð−l−2Þ
vc;− , which fixes l− ¼ −ðlþ þ 2Þ. As shown in

Fig. 2(b), we find that at these crossing points, ηl acquires
a nonzero value: ηl ¼ −2 for l− < l < −1 and η ¼ þ2 for
−1 < l < lþ, with ηl ¼ 0 at l ¼ −1. Intuitively, this can be
understood as follows—at large negative l, the branches
are merged into the bulk and since there are no subgap
states, ηl ¼ 0. On increasing l, the branches begin sepa-
rating from the bulk but since both have positive energy, ηl
still vanishes. At l−, however, one of the branches crosses
the Fermi energy, creating a difference of precisely two
between the number of negative and positive energy
eigenvalues of HðlÞ. At l ¼ −1, ηl necessarily vanishes
due to PH symmetry, which also fixes ηl for l > −1. In
contrast with jkj ¼ 1, the branches are not PH symmetric
with respect to themselves, allowing the spectral asymme-
try to acquire a nonzero value in the BCS regime. The fact
that ηl changes from the BEC to the BCS regime can also
be understood as a consequence of spectral flow along the
vortex core states, since ηl (and hence, L) cannot change its
value in any other way.
A nonzero spectral asymmetry ηl appears generally for

any jkj ≥ 2 within the BCS regime: for even k [see
Fig. 2(d)], there are jkj=2 pairs of branches such that the
branches within each pair are PH symmetric with each other.
ηl then changes by �2 whenever one of these branches
crosses the Fermi level; for odd k [see Fig. 2(c)], there are

ðjkj − 1Þ=2 pairs that contribute to a nontrivial ηl since the
branches within each pair go into each other under a PH
transformation, while the remaining branch is PH symmetric
with respect to itself and therefore, does not contribute to ηl.
Having established the existence of a nonvanishing ηl,

we see that there must exist unpaired fermions in the BCS
ground state for jkj ≥ 2, and as a consequence of Eq. (6), L
acquires a nontrivial ground state eigenvalue. For k ¼ 2,
this isL ¼ −l2þ − lþ, where we used PH symmetry to relate
l− to lþ. Importantly, the analytic calculation of the vortex
core states (performed in Supplemental Material [36])
demonstrates that the positions of the crossing points are
located at l� ∼ kFξ with the prefactor fixed by the form of
ΔðrÞ. This scaling persists in self-consistent numerical
calculations [55–57]. Equation (6), along with this scaling,
thus establishes the reduction of the OAM of the k ¼ 2
MQV in the weakly paired regime. To leading order in kFξ,
L ¼ Lz − N ∼ −ðkFξÞ2. As a result, the OAM is signifi-
cantly suppressed from LBEC

z ¼ N since kFξ ≫ 1 in the
BCS regime (Δ0 ≪ EF). This analysis confirms that the
unpaired fermions carry angular momentum opposite to
that carried by the Cooper pairs. On a disc, N ≈ ðkFRÞ2=2,
leading to Lz=N ≈ 1 − αðξ=RÞ2, where α is an Oð1Þ
constant fixed by ΔðrÞ. As an independent check, we have
verified this behavior by numerically calculating Lz=N
using the full BdG solution (see Supplemental
Material [36] for details). In Fig. 3, the quadratic scaling
is shown to be in good agreement with the numerical data.
We thus expect a substantial reduction of the OAM in the
BCS regime, where ξ can be comparable to R [16]. We also
expect that when two elementary vortices merge into a k ¼
2 MQV [52,53], the ground state OAM decreases from
Lz ¼ N by an amount ∼ðkFξÞ2.
A central feature of our result is that the suppression of

Lz for jkj ≥ 2 is independent of any boundary effects and is
solely determined by the splitting between the vortex core
branches. Given this insensitivity to boundary details, we
expect our results to hold for more general sample
geometries, which may lack axial symmetry. Unlike the
ground state energy, which might depend strongly on the
gap profile, the OAM thus exhibits universal scaling

FIG. 2. BdG solution for MQVs with Δ0 ¼ 0.15EF, μ ¼ EF,
and kFR ¼ 80: (a) comparison of energy spectrum for k ¼ 2 with
analytic approximation (in red); (b) spectral asymmetry for
k ¼ 2; (c) energy spectrum for k ¼ 3 and (d) for k ¼ 4.

FIG. 3. The analytic prediction Lz=N ¼ 1 − αðξ=RÞ2 (red line)
fits the numerical data (blue dots) well over a wide window within
the BCS regime 0.05≲ Δ0=EF ≲ 0.25 for an MQV with k ¼ 2.
The slope of the fit equals two as shown on a log-log plot.
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behavior in the weak-pairing BCS regime. The lack of
dependence of the OAM on the system boundary is in stark
contrast with weakly paired chiral (e.g., dþ id) SFs, where it
was shown [40,42] that the OAM is suppressed due to the
topological edge modes, but that this effect is strongly
dependent on the edge details [41,47,48,58]. Our analysis
hence suggests that s-waveSFswithMQVsmayprove to be a
more robust platform for investigating the intriguing sup-
pression of the OAM in paired SFs.While theOAMhas been
measured in SFs [59–61], we also expect signatures of
unpaired fermions—which create a current localized around
the vortex core that flows counter to the superflow—in local
supercurrent density measurements in MQV states [17].
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