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We address the problem of a lightly doped spin liquid through a large-scale density-matrix
renormalization group study of the t-J model on a kagome lattice with a small but nonzero concentration
δ of doped holes. It is now widely accepted that the undoped (δ ¼ 0) spin-1=2 Heisenberg antiferromagnet
has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin
liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal.
Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole per
unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from
which we infer that the state is a crystal of spinless holons, rather than of holes. Our results may be relevant
to kagome lattice herbertsmithite upon doping.
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Introduction.—Broad interest in quantum spin liquid
phases (QSLs) was triggered by the notion that they can be
viewed as insulating phases with preexisting electron pairs,
such that upon light doping they might automatically yield
high temperature superconductivity [1–7]. It has also been
proposed that a doped QSL might form an exotic topo-
logically ordered Fermi liquid state (known as an FL* state)
[8,9], or various other topologically ordered versions of
familiar phases [10]. More broadly, it has been suggested
that a host of behaviors of highly correlated electronic
systems can be best understood from the perspective of
doped spin liquids [11–16]. However, a “microscopic”
theory of QSLs is difficult, as they seem to arise only in
narrow portions of the generalized phase diagram where
more typical broken symmetry states are suppressed by
frustration, and in an “intermediate coupling” regime where
neither the effective kinetic nor the interaction energy is
dominant.
The spin-1=2 antiferromagnet on the kagome lattice

(depicted in Fig. 1) with nearest-neighbor (NN)
Heisenberg interactions, i.e.,HJ in Eq. (1), is geometrically
frustrated. A number of numerical simulations [17–22]
have provided strong evidence that its ground state is a
“Z2-QSL” with exponentially falling spin-spin correlations
and a nonzero spin gap, although some recent studies
[23–28] have suggested that the true ground state may be a
gapless (nodal) QSL. The fact that the observed spin
correlation lengths in the earlier references are short
compared to the width of the ladders studied leaves little
room to doubt that they reflect the properties of a spin-
gapped state. Nonetheless, it is plausible that there are at
least two distinct QSL phases—one gapped and another
ungapped—that are very close in energy such that the
balance between them can shift as a function of ladder
width, geometry, or slight changes in parameters; if this is

the case it could reconcile the two sets of findings while
leaving open the issue of which QSL is the ground state in
the 2D limit.
Independent of which QSL has the lowest energy in two

dimensions, in the present study, the fact that the spin
correlation lengths we observe are several times shorter
than the width of our cyllinders leaves little doubt that we
are studying the properties of a doped, fully gapped Z2

spin liquid. Experimentally, the celebrated material her-
bertsmithite is a realization of the two-dimensional kagome
antiferromagnet [29,30], where the copper ions carry spin-
1=2 magnetic moments which condense to form a QSL
ground state. Specifically, experimental evidence of frac-
tional spin excitations has been found in neutron scattering
and strong indications of a spin gap are seen in NMR
studies of single crystals [31,32].
The elementary excitations of a Z2-QSL can be con-

structed [3,33] as combinations of a fermionic charge-0
spin-1=2 “spinon,” a charge-e spin-0 bosonic holon, and a
neutral topological “vison.” The statistics of these particles
is a matter of convenience—for instance, a fermionic holon
can be constructed [34] as a bound state of a bosonic holon
and a vison, while a normal spin-1=2, charge-e hole can
be constructed as a bound state of a spinon and a holon.
(We consider only hole doping of the QSL, so we can safely
ignore negatively charged excitations.)
If we assume that the states achieved by adding a net

positive charge density δ ≪ 1 per site to a QSL insulator
can be described in terms of dilute excitations on top of a
background QSL, then a variety of possible ground-state
phases are natural to consider: If the lowest energy charged
excitations are ordinary holes, then these can either remain
itinerant, forming a FL*, (which is a distinct phase from a
usual Fermi liquid as the Fermi surface only encloses an
area corresponding to the density of doped holes, so
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violates Luttinger’s theorem) or if they crystalize, they might
form an insulating hole Wigner crystal (hWC) with one
doped hole per emergent unit cell [35]. If, on the other hand,
the lowest energy charged excitations are holons, then they
could condense to form a conventional superconducting state
with small superfluid density ∼δ, or they could crystalize.
We refer to the later state as WC*, which is distinguishable
from hWC in that there are no low energy spin degrees of
freedom. One could also imagine that the lowest energy
charged excitations are holon pairs (or equivalently, spin-
singlet hole pairs), which if they crystallize would form an
insulating WC of Cooper pairs. Still more complicated
phases could occur if a fraction of the charged excitations
crystallize while others remain itinerant, or by condensing
fermionic holons or bosonic spin-1=2 charge-e holes.
Principle results.—We find that the spin-spin correlation

function (Fig. 2) is remarkably insensitive to doping.
Indeed, the spin correlation length, ξs ≲ 2 lattice constants,
is small compared to the circumference of the cylinders
studied and to the mean separation between doped holes.
The fact that they look little different than those for δ ¼ 0 is
consistent with viewing the system as a lightly doped QSL.
The expectation value of the charge density (Figs. 4 and 5)
is inhomogeneous, and the amplitude of the charge density
variations is relatively insensitive to system size, implying
that the ground state in the thermodynamic limit sponta-
neously breaks translation symmetry. Moreover, for the
most part, the charge density appears to favor a triangular
lattice with one doped hole per unit cell. Given the fact that
there is no doping-induced magnetic order, we may identify
this state as a WC*. However, the precise crystal structure
of the WC* in the thermodynamic limit is not something
we can infer with confidence, as in some cases, depending
on the value of δ and the circumference of the cylinder,
we find a stripe crystal rather than a triangular lattice.

All superconducting correlations are extremely short-
ranged (Fig. 3), with a correlation length ξSC ≲ 1.3. [36]
Model Hamiltonian.—We employ the density-matrix

renormalization group (DMRG) [38,39] to investigate
the ground state properties of the hole-doped kagome
t-J model depicted in Fig. 1 defined by the Hamiltonian

H ¼ −t
X

hijiσ
ðc†iσcjσ þ H:c:Þ þ J

X

hiji

�
Si · Sj −

1

4
ninj

�
; ð1Þ

where cþiσ (ciσ) is the electron creation (annihilation)

operator with spin-σ on site i. S⃗i is the spin operator
and ni ¼

P
σc

þ
iσciσ is the electron number operator. hiji

denotes NN sites and the Hilbert space is constrained by
the no-double occupancy condition, ni ≤ 1. At half-filling,
i.e., ni ¼ 1, the t-J model reduces to the spin-1=2 anti-
ferromagnetic Heisenberg model.
The lattice geometry used in our simulations is depicted

in Fig. 1, where e1 and e2 denote the two basis vectors. We
consider kagome cylinders with periodic (open) boundary
condition in the e2 (e1) direction. A cylinder geometry
introduced Ref. [40] (which we will refer to as YC) is used
such that one of the three bond orientations is along the e2
axis. Here, we focus on cylinders with width Ly and length
Lx, where Ly and Lx are the numbers of unit cells (2Lx and
2Ly are the number of sites) along the e2 and e1 directions,
respectively. Notice that the unit cells at the right boundary
of the cylinder contain only two sites (A and C) in order to
reduce the boundary effects due to sharp edges. Following
Refs. [18,40], we refer to the cylinders as YC-2Ly, whose
total number of sites is N ¼ Lyð3Lx þ 2Þ ¼ Nu þ 2Ly,
where Nu denotes the number of sites inside intact unit
cells. In this Letter, we focus primarily on YC-6 and YC-8
cylinders, i.e., Ly ¼ 3 and 4, with Lx ¼ 12–24. We have
also considered YC-10 cylinders, i.e., Ly ¼ 5, and found
similar results [see Fig. 4(e)]. As usual, the doping level of
the system away from half-filling is defined as δ ¼ Nh=Nu,
where Nh is the number of holes. Although Nu ≠ N so
that the average value of δ differs slightly from ~δ ¼ Nh=N,
deep in the bulk, i.e., relatively far from the open bounda-
ries, ~δ ¼ δ.
For the present study, we focus on the lightly doped

case with 0 ≤ δ ≤ 11%. We set J ¼ 1 as an energy unit and
consider t ¼ 3. The results also hold for the other t. We
perform up to 50 sweeps and keep up to m ¼ 10 000

DMRG states with a typical truncation error ϵ ∼ 10−6

for YC-6 cylinders, ϵ ∼ 10−5 for YC-8 cylinders, and ϵ ∼
5 × 10−5 for YC-10 cylinders. This leads to excellent
convergence for our results when extrapolated to the
m ¼ ∞ limit (see the Supplemental Material [41].)
Spin-spin correlations.—To describe the magnetic

properties of the ground state, we calculate the spin-spin

correlation functions defined as FðrÞ ¼ ð1=LyÞ
PLy

y¼1 j

FIG. 1. The t-J model on a kagome cylinder, where the
electrons live at the vertices (solid circles). Periodic (PBC) and
open (OBC) boundary conditions are imposed, respectively,
along the directions specified by the lattice basis vectors, e2
and e1. Each basis (denoted by small triangle in the shaded
region) has three sites (A, B, and C) and three bonds (a,b, and c).
t and J are hopping integral and spin exchange interactions
between NN sites. Lx and Ly are the number of unit cells in the e1
and e2 directions.
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hS0 · Srij. Here S0 denotes the spin operator on the
reference A site in the middle of the cluster, while Sr runs
over both A and B sites along the e1 direction with the
distance r between them. At half-filling, i.e., δ ¼ 0, the
ground state of the system is a QSL [17–20,40] with short-
range spin-spin correlations. This is confirmed by our study
where FðrÞ for YC-6 and YC-8 cylinders in Fig. 2 both
decay rapidly, and can be well fitted by an exponential
function FðrÞ ∼ e−r=ξs with short correlation lengths ξs ¼
1.1–1.3 lattice spacings.
Upon doping, we find that the spin-spin correlations still

remain short-ranged, where FðrÞ for various δ > 0 and
different system sizes are shown in Fig. 2. For all cases, we
find that FðrÞ decays exponentially with small ξs, although
ξs slightly depends on δ and lattice geometry. For both YC-6
and YC-8 cylinders, we find that ξs ¼ 1–2 lattice spacings,
similar to those of the QSL state of the undoped cylinder.
Superconducting correlation.—We have also investi-

gated the possibility of superconductivity. Since the ground
state remains a spin-singlet state upon doping, we focus on
spin-singlet superconductivity. A diagnostic of supercon-
ducting order is the pair-field correlator defined as

ΦαβðrÞ ¼
1

Ly

XLy

y¼1

jhΔ†
αði0ÞΔβði0 þ rÞij: ð2Þ

Here, Δ†
αðiÞ is the spin-singlet pair-field creation operator

given by Δ†
αðiÞ ¼ ð1= ffiffiffi

2
p Þðc†i↑c†iþα↓ − c†i↓c

†
iþα↑Þ, where α

denotes the bond type (see Fig. 1), i.e., a, b, or c, with
bond vectors defined as a ¼ e1=2, c ¼ e2=2 and
b ¼ ðe2 − e1Þ=2. i0 is the index of the reference bond in
the middle of the cluster, and r is the distance between two
bonds along the e1 direction.
In the present study, we find that Φaa, Φbb, Φcc, Φab,

Φbc, and Φca all decay exponentially for both YC-6 and
YC-8 cylinders [see Figs. 3(a) and 3(b)]. For large
separations along the cylinder, 1 ≪ jrj ≪ Lx, where

r ¼ rê1, Φ can be well expressed as ΦαβðrÞ ∼ e−jrj=ξ
αβ
sc

from which we derive the superconducting correlation
length ξαβSC. As shown in Fig. 3(c), ξSC ¼ 0.5–1.3 lattice
spacings for all doping levels 0 < δ ≤ 11% we have
explored. Therefore, our results suggest that there is no
(quasi-) long-range superconductivity in the doped
kagome QSL.
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FIG. 3. The superconducting pair-field correlation functions
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is the distance between two bonds with the reference bond in the
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ξsc as a function of δ, by fitting ΦðrÞ to an exponential function
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Charge density wave order.—Finally, we consider the
charge density profile nhðx; yÞ ¼ 1 − nðx; yÞ, where nðx; yÞ
is the electron density on site i ¼ ðx; yÞ. Figure 4 shows
some examples of nhðx; yÞ at different δ for YC-6, YC-8,
and YC-10 cylinders. Clear CDW ordering is observed
[42], although its pattern depends on both the lattice
geometry and doping level. There is unidirectional CDW
order at low doping levels for YC-6 cylinders, but this
appears to be special for YC-6 geometry. For higher doping
level for YC-6 cylinders and all doping levels for YC-8
cylinders, the CDW order resembles a two-dimensional
Winger crystal, Figs. 4(b)–4(d).
Approximately, the doped system can be divided into

new larger emergent unit cells, each containing one of
the red stripes in Fig. 4(a) or one of the red spots in
Figs. 4(b)–4(e); the number of emergent unit cells is equal
to the number of doped holes at all doping levels. This is
not a crystal of hole pairs.
To determine whether the CDW order survives in the

thermodynamic limit, we further calculate the averaged

rung charge density defined by nhðxÞ ¼ ð1=LyÞ
PLy

y¼1

nhðx; yÞ. Examples of nhðxÞ at different δ are plotted in
Fig. 5. Here, the existence of long-range CDWorder in the
ground state can be determined by fitting the amplitude
ACDW of the oscillation of nhðxÞ and extrapolating the value
to Lx ¼ ∞. To minimize the boundary effect, we have

removed four data points from both ends in the fitting
process. Examples of the extrapolation are given in Fig. 5.
The observed finite amplitude ACDW in the thermodynamic
limit establishes the presence of long-range CDW order.
Discussion.—In light of our observations, it is worth

asking if there is an intuitive reason that the holons crystallize,
rather than forming one of the possible quantum fluid states. It
is already clear from previous numerical studies that the QSL
in the kagome system is nearly degenerate with a number
of possible valence-bond-crystalline phases. It is thus natural
to imagine that the holon is a highly structured particle,
surrounded by a “polaronic” cloud of valence-bond-crystal-
like correlations.
In Fig. S3 in the Supplemental Material [41], we show

that two doped holes in cylinders of moderate length
(Lx ¼ 12 and 16) induce a strong and extended pattern
of valence-bond-crystalline order in their neighborhoods.
The most obvious corollary is that the holon effective
mass is strongly renormalized (increased). Moreover, the
induced valence bond order implies the existence of
moderate range effective interactions between holons,
which if they are repulsive can naturally lead to crystal-
lization. Note that in Fig. S2, we show that the spin gap
with two doped holes (extrapolate to the Lx → ∞ limit) is
of the same order, although probably smaller than in the
undoped ladder; this further corroborates our identification
of this as a two-holon state.
Since the kagome antiferromagnet, i.e., HJ in Eq. (1),

has been shown to be a realistic model to describe
herbertsmithite [29,30], our results may be directly relevant
to the real material upon doping. Consistent with our
results, recent experimental studies have reported the
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absence of superconductivity in kagome systems doped
with either electrons [43] or holes [44]. While we have only
studied finite cylinders, it is plausible that the results are
representative of the thermodynamic limit, given the fact
that the size of the cylinders, including both width Ly and
length Lx, are much larger than both the spin-spin and
superconducting correlation lengths.
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