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Viscous electronics is an emerging field dealing with systems in which strongly interacting electrons
behave as a fluid. Electron viscous flows are governed by a nonlocal current-field relation which renders the
spatial patterns of the current and electric field strikingly dissimilar. Notably, driven by the viscous friction
force from adjacent layers, current can flow against the electric field, generating negative resistance, vorticity,
and vortices. Moreover, different current flows can result in identical potential distributions. This sets a new
situation where inferring the electron flow pattern from the measured potentials presents a nontrivial problem.
Using the inherent relation between these patterns through complex analysis, here we propose a method for
extracting the current flows from potential distributions measured in the presence of a magnetic field.
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For electron transport in conductors, one can outline
two broadly defined scenarios depending on the relative
strength of disorder and interactions [1–4]. In the disorder-
dominated regime one finds “individualist” behavior of
electrons moving in straight lines like pinballs bouncing
among impurities. Fast momentum relaxation gives the
familiar Ohm’s law with current locally proportional to the
electric field. In the interaction-dominated regime, when
particles exchange their momenta at the rates much faster
than the disorder collision rates, electrons move in a neatly
coordinated way, in many ways resembling the flow of
viscous fluids [5–15]. The current-field relation changes
drastically in this case [16].
Signatures of viscous flows have been observed in ultra-

clean GaAs, graphene, and PdCoO2 [17–20]. Graphene, in
particular, is well suited for studying electron viscosity since
low disorder and weak electron-lattice coupling render
momentum-conserving two-body (e-e) collisions dominant
in a wide range of carrier densities and temperatures. In
contrast, momentum-nonconserving umklapp e-e processes
are forbidden because of graphene crystal symmetry. Gate-
tunable and temperature-dependent collision rates help to
realize the ballistic and viscous regime in a single sample.
Current in an electron fluid is locally proportional to

momentum density, but its relation to the electric field is
nonlocal since the viscous force is proportional to the
velocity Laplacian. As a result, the electric field and current
can be quite different vector fields. Unraveling the relation
between them is one of the challenges of viscous electron-
ics. In particular, one needs to find ways to reconstruct
currents from the potentials, measurable by a variety of
experimental techniques. As we will see, while the result-
ing integral relations are nontrivial, in two dimensions they
can be tackled using a powerful framework of complex
analysis. This provides a direct link between measured
potentials and the current flow patterns.

We will see that the currents depend not only on the
potentials but also, in an essential way, on the boundary
conditions. As a result, identical potential distributions can
correspond to totally different flow patterns. This surprising
behavior is illustrated in Fig. 1 which shows a flow injected
into a conducting half-plane through a pointlike source at
the edge. For an incompressible flow, charge continuity
yields ∇ · j ¼ ne∇ · v ¼ 0. We resolve this condition by
introducing the stream function

v ¼ z ×∇ψ ¼ ð−∂yψ ; ∂xψÞ ð1Þ

(see, e.g., Ref. [21]). The isolines of ψ define streamlines
since their tangent is parallel to the velocity everywhere.
Panels (a) and (b) in Fig. 1 present the streamlines for the
no-stress (i.e., zero shear stress) and no-slip boundary
conditions, respectively. In both cases the streamlines are
straight lines pointing outward away from the source.
However, the two flows have very different angular dis-
tributions, described by the stream functions

ψ1ðθÞ¼
~I
4π

ðsin2θ−4θÞ; ψ2ðθÞ¼
~I
2π

ðsin2θ−2θÞ; ð2Þ

where θ ¼ tan−1 y=x is the polar angle and ~I ¼ I=ne is
current nondimensionalized with the carrier density and
charge. The currents depend on the angle, respectively,
as 1þ sin2 θ and 2 sin2 θ. The potential map is identical
in both cases, taking negative values at the boundary
[16,18,22], see Eq. (11) and discussion below. Both flows
pictured in Fig. 1 have nonzero vorticity ωðrÞ ¼ ∇ × v;
however the streamlines do not form loops. This illustrates
that, in a departure from a common belief, vortices are not
required for negative voltage to occur.
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Understanding the current and voltage distributions in
two dimensions is facilitated by complex analysis which
organizes distinct physical fields into a single holomorphic
function. On the account of long-range Coulomb inter-
actions, we treat electrons as an incompressible fluid. A
low-Reynolds flow obeys the Stokes equation which states
the balance of viscous friction and electric force:

η∇2vðrÞ ¼ ne∇ϕðrÞ: ð3Þ

Here ϕðrÞ is the electric potential and η is the viscosity.
Combining Eqs. (3) and (1), we see that the vorticity ω ¼
∇2ψ ¼ ð∂2

x þ ∂2
yÞψ and ϕ form a Cauchy-Riemann pair

∂xω ¼ ðen=ηÞ∂yϕ; ∂yω ¼ −ðen=ηÞ∂xϕ: ð4Þ

The quantities ω and ϕ are therefore proportional to the
imaginary and real part of a holomorphic function of
z ¼ xþ iy, respectively. This behavior is distinct from
the Ohmic case j ¼ env ¼ −σ∇ϕ, where

enz ×∇ψ ¼ −σ∇ϕ: ð5Þ

In this case it is the stream function ψ that takes on the role
of a Cauchy-Riemann counterpart of the potential ϕ.
Before moving on, we discuss the validity of Eq. (3). In a

clean conductor, such as graphene, Eq. (3) holds at the
length scales greater than the e-e collision mean free path
lee but shorter than the length scales set by momentum-
nonconserving scattering by residual disorder or phonons.
The latter can be described by a resistivity term as

ðη∇2 − n2e2ρÞvðrÞ ¼ ne∇ϕðrÞ: ð6Þ

The new term, despite being small, becomes relevant at
distances exceeding l� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η=n2e2ρ

p
. To estimate l� we

use the Drude model for resistivity, ρ ¼ pF=ne2lp with
lp the elastic mean free path, and express the dynamic
viscosity as η ¼ nmν. Here the kinematic viscosity ν
represents the momentum diffusion coefficient, ν ∼ vlee.
Combining these estimates we arrive at l� ¼ ðlpleeÞ1=2. In
a clean system, e.g., graphene, these length scales satisfy
lee ≪ l� ≪ lp. The values lp and lee, estimated for
graphene [23], yield l� on the order of a few micrometers.
Below we focus on the length scales lee ≪ r ≪ l� where
Eq. (3) holds. Detailed analysis of both viscous and Ohmic
effects through Eq. (6) can be found in Ref. [23].
Extracting the current spatial dependence from that for

the potential, which is readily measurable by a variety of
experimental techniques [26,27], can in principle be done
by inverting the integral relations [Eq. (4)]. However,
instead of facing this hard task, here we suggest an
approach that involves direct measurements rather than
indirect computations (cf. Ref. [28]). Namely, we propose
measuring magnetoresistance in the presence of a classi-
cally weak magnetic field, such that the cyclotron radius is
much greater than the mean free path lee. In this case, the
Eqs. (3) and (6) acquire an extra term due to the Lorentz
force: ðη∇2 − n2e2ρÞv ¼ ne∇ϕþ neBv × z. Substituting
Eq. (1) we obtain

ðη∇2 − n2e2ρÞvðrÞ ¼ ne∇ϕðrÞ þ neB∇ψ : ð7Þ

Taking the curl of Eq. (7) we obtain ½ηð∇2Þ2−n2e2ρ∇2�ψ ¼
neðv ·∇ÞB. We see that when the magnetic field does not
change along the flow, the stream function ψ obeys the
equation identical to that at B ¼ 0.
Writing Eq. (7) as a balance between momentum loss

due to the Ohmic term and the divergence of the momen-
tum flux, we see that constant B enters only the diagonal
(pressure) part of the flux:

∂
∂xi

�
neðϕþ BψÞδik þ η

�∂vi
∂xk þ

∂vk
∂xi

��
¼ ρn2e2vk: ð8Þ

Equation (8) implies that the constant magnetic field does
not affect the boundary conditions on ψ considered here.
Indeed, the tangential derivative of ψ is completely deter-
mined by the incoming or outgoing current. The normal
derivative (equal to the tangential velocity) is determined
by friction, that is by the continuity across the boundary of
the normal flux of tangential momentum p∥, i.e., the off-
diagonal part of the flux tensor in Eq. (8). The no-slip
condition (zero p∥) means full momentum relaxation at
the boundary, which apparently cannot be affected by the
magnetic field. The no-stress condition (zero flux of p∥)

FIG. 1. Streamlines (black) and potential color map for current
injected through a point in a half-plane, Eqs. (2) and (11). The
velocity is shown by white arrows, its magnitude is proportional
to the density of streamlines. Boundary conditions: (a) no stress
(i.e., shear-stress free); (b) no slip.
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takes place when fluid borders the medium which does not
support tangential stress; here again the magnetic field does
not change the condition. The same is true for the mixed
boundary condition, where the flux of tangential momen-
tum at the system boundary is proportional to the tangential
velocity [23].
Since neither equation nor boundary conditions change,

we conclude that the stream function remains unchanged
when a constant weak B field is applied. Under these
conditions, the quantity ϕþ Bψ must be equal to the
potential obtained at B ¼ 0. Therefore, the ϕ and ψ
dependence on B takes on a very simple form

ϕB≠0ðrÞ ¼ ϕ0ðrÞ − Bψ0ðrÞ; ψB≠0ðrÞ ¼ ψ0ðrÞ; ð9Þ

where the subscript zero denotes the quantities found at
B ¼ 0. This relation can be used to obtain the stream
function ψ directly from the electric potential measure-
ments. Alternatively, and perhaps more conveniently, ψ can
be obtained through antisymmetrization as

2Bψ0ðrÞ ¼ ϕ−BðrÞ − ϕBðrÞ: ð10Þ

The stream function is a fundamental fluid-mechanic
quantity that describes incompressible flows. The relation
Eq. (10) therefore provides a vehicle that directly relates
current flows with the measured potentials. Repeating the
steps that have led us to Eq. (4), we see that for viscous flow
in the presence of a B field, the Cauchy-Riemann relations
are obeyed by the quantities ω and ϕþ Bψ .
As one can see from Eq. (4), the electric field can only

arise in the presence of nonuniform flow vorticity. To better
understand the role of vorticity, we recall that viscous
friction is determined by the symmetric part of the tensor of
velocity derivatives. The vorticity, which is the antisym-
metric part of this tensor, describes rotation of a fluid
element as a whole that does not cause friction (e.g., see
Ref. [21]). It is vorticity inhomogeneity that produces the
electric field required to balance viscous friction. The
relations Eq. (4) imply, in particular, that in irrotational
viscous flows, wherein ω ¼ 0, the electric potential ϕ
is constant and the electric force vanishes in the bulk.
Such “freely flowing” currents are described by a velocity
potential, v ∝ ∇λ. Potential flows occur when the vorticity
vanishes on the boundaries, in which case it can be shown
to vanish everywhere. In terms of the electric potential ϕ
this translates into equipotential, i.e., metallic boundaries
(the fascinating topic of electric field expulsion from
viscous charge flows with metallic boundaries will be
discussed elsewhere). In contrast, the potential is not
identically constant and the vorticity is nonzero for non-
metallic boundaries, in which case a wide variety of
nontrivial current and potential patterns can arise.
An instructive example is provided by viscous flows

originating from a point source at the edge of the half-plane

y ≥ 0. The solution for general boundary conditions
including no slip and no stress as limiting cases is presented
in Ref. [23]. For the no-stress limit it gives Eq. (2). The
vorticity can then be derived as ω ¼ ∇2ψ ¼ ~IIm z−2=2.
The potential, obtained from Eq. (4), has a quadrupole
form:

ϕðx; yÞ ¼
~Iη
2ne

Re z−2 ¼ −
~Iη
2ne

cos 2θ
r2

: ð11Þ

In the no-slip case, in a similar vein, we find ψ2ðθÞ in
Eq. (2). Interestingly, while the streamlines are straight
lines directed outward from the source in both cases, the
actual velocity patterns are quite different (see Fig. 1). The
quantities ω and ϕ, obtained from ψ2ðθÞ, have the same
form as in Eq. (11) but are twice larger than in the no-stress
case, where there is no edge friction.
Both the viscous force and the electric force, balancing

each other, are nonzero. The electric field exhibits multiple
sign changes,

∂ϕ
∂r ∝

cos 2θ
r3

; r−1
∂ϕ
∂θ ∝

sin 2θ
r3

; ð12Þ

reflecting that the electric forces push the fluid outward for
π=4 < θ < 3π=4 but pull it inward near boundaries, where
they balance the viscous drag from the faster-moving
adjacent layers of the fluid. It is this field that produces
the negative voltage at the edge [16].
Having established that vorticity is necessary for the

appearance of the electric field inside a viscous charge flow,
we now discuss vortices. It is important to distinguish the
generic features due to local vorticity from a more specific
global pattern of a vortex. Indeed, nonzero vorticity at a
point means that an infinitesimal fluid element rotates as it
moves. Such motion, however, may take place even along
perfectly straight streamlines such as those in the flows
pictured in Fig. 1, where vorticity is nonzero since different
streamlines have different velocities. Vortices, on the other
hand, are defined by closed-loop streamlines, that is they
are global rather than local structures. Accordingly, unlike
the half-plane geometry in Fig. 1, vortices can be readily
produced in a confined geometry. Vortices can be charac-
terized by separatrix lines which separate the closed and
open streamlines. Below we illustrate this general behavior
for a strip of a finite width.
We start with the no-stress boundary condition and

consider the pointlike source and drain positioned at
(0,0) and ð0; wÞ in the strip −∞ < x < ∞, 0 < y < w. A
solution of the biharmonic equation with ∂xψ ¼ ~IδðxÞ and
∂2ψ=∂y2 ¼ 0 at y ¼ 0; w reads

ψðx; yÞ ¼
~I
4π

Z
∞

−∞

eikxdk

ik cosh kw
2

ða cosh k~y − k~y sinh k~yÞ; ð13Þ

where we defined ~y ¼ y − w=2 and a ¼ 2þ ðkw=2Þ
tanhðkw=2Þ. The streamlines, given by the contours of
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ψ , are pictured in Fig. 2(a). The flow, directed from source
to drain along the nominal current path, mimics that in
Fig. 1 near each contact. Closed streamlines form a pair of
vortices.
To analyze the separatrices of the flow, we consider the

velocity at the boundary y ¼ 0. Simple algebra yields

vxðx; 0Þ ¼ −
∂ψ
∂y ¼ Ið2 − πx

w coth πx
w Þ

4wne sinhðπx=wÞ : ð14Þ

At jxj ≪ w, the velocity is directed away from the source as
in a half-plane, vx ∝ 1=x. However, vx is directed towards
the source at jxj ≫ w, representing backflow due to
vortices. We therefore conclude that there are stagnation
points at the edge, where vx ¼ vy ¼ 0. At such points,
marked s1, s2, s01, s

0
2 in Fig. 2(a), two streamlines meet: one

directed along the strip edge and another perpendicular
to it. The latter represents a separatrix between the
source-to-drain streamlines and the vortex streamlines.
The stagnation points are defined by the equation πx=w ¼
2 tanhðπx=wÞ, giving x=w ¼ �0.61. This is in accord
with the flow shown in Fig. 2(a), where arrows mark the
streamlines nearest to the separatrices.
The potential is obtained by solving Eq. (3) which gives

ϕðx; yÞ ¼ α

Z
∞

−∞
dkeikx

k sinh k~y
cosh kw

2

¼ απ2

w2
Re

cosh πz
sinh2πz

; ð15Þ

where α ¼ Iη=πðneÞ2 and z ¼ ðxþ iyÞ=w. Amusingly, this
result can also be obtained from the solution for the
source and drain in the half-plane, ϕðz0Þ ¼ Re½ðz0 − 1Þ−2 −
ðz0 þ 1Þ−2�, by mapping it onto the strip. Both the potential

and the flow, taken near each contact, mimic those found
for a point source in the half-plane.
The topology of the flow can change drastically upon

altering the boundary conditions. As we now show, the
flow found for the no-stress case undergoes a global change
upon switching to the no-slip boundary conditions. This
behavior is a manifestation of the fundamental nonlocality
of viscous flows discussed above. The stream function for
the no-slip case is of the form [16]

ψðx; yÞ ¼
~I
2π

Z
∞

−∞

dk
ik

eikx
c1 cosh k~y − c2k~y sinh k~y

kwþ sinh kw
; ð16Þ

where c1 ¼ kw coshðkw=2Þ þ 2 sinhðkw=2Þ, c2 ¼
2 sinhðkw=2Þ. From Fig. 2(b) it may appear that the
streamlines form radial patterns near contacts identical to
those in Fig. 2(a), with −~I=2 < ψ < ~I=2. However, a closer
inspection reveals additional streamlines corresponding to
the boundary values ψ ¼ �~I=2. These streamlines leave
the contacts horizontally and then curve inward. Their form
can be obtained explicitly by evaluating ψ in the domain
y ≪ x ≪ w. Treating kw as a large parameter, we write

πψðx; yÞ=~I ≈ arctanðx=yÞ þ xy=ðx2 þ y2Þ þ 2xy=w2

≈ π=2 − 2y3=3x3 þ 3xy2=w3: ð17Þ

The terms first-order in y cancel, which allows for a
second streamline with the same ψ value as at the edge,
ψðx; yÞ ¼ ~I=2. This line, described by y ¼ 9x4=2w3

at small y, is a separatrix between the source-to-drain
streamlines and the vortex streamlines. This is illustrated in
Fig. 2(b) where arrows mark the streamlines nearest to the
separatrices. The vortex streamlines fill the space between
the separatrix and the strip edge, extending arbitrarily close
to the contacts.
To confirm that the streamlines below the separatrix

turn around without reaching the source, we analyze the
velocity vx ¼ −∂ψ=∂y. For y ≪ x ≪ w, approximating

Z
∞

0

k
2
dk sin kxðye−ky − w sinh kye−kwÞ ≈ y2

x3
−
xy
w3

; ð18Þ

we see that the horizontal velocity reverses its sign at the
“demarcation” line y ¼ x4=w3 (lying below the separatrix)
which means that upon crossing this line the streamlines
turn around. Below this line, the second term in Eq. (18)
dominates, making the flow along the edge directed
towards the contact. In the limit w → ∞, when the strip
turns into a half-plane, the demarcation line disappears. In
this case there are no closed streamlines and no backflow.
The qualitative difference between the no-slip and no-

stress boundary conditions is manifested in the different
dependence of the flows on the sample shape. If we replace
the infinite strip by a rectangle 0 < y < w, −L < x < L,

FIG. 2. Current streamlines (black) and potential color map
for a flow across the strip. Arrows mark the streamlines nearest
to separatrices. Stagnation points are labeled s1;2, s01;2. To
elucidate the behavior near contacts, two regions are shown
with a tenfold density of streamlines. Boundary conditions:
(a) no stress, (b) no slip.
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then the stagnation points and separatrices disappear in the
no-stress case for the sufficiently small aspect ratio L=w.
However, in the no-slip case, the separatrices survive and
the vortices persist at any aspect ratio [23].
Potential distribution, obtained from Eq. (3), looks

similar in both cases and does not reflect the presence of
the separatrices and backflow, see Fig. 2(b). It changes sign
twice on the nodal lines that make the angles �π=4 with
the edge, as in a half-plane. We conclude that, while there
is always a backflow along the edges in a wide strip,
L ≫ w, this backflow (while interesting in itself) is of little
relevance for the negative voltage measured in Ref. [18].
Likewise, the voltage singularities near the contacts reflect
diverging streamlines and have nothing to do with the
vortices or separatrices (see Fig. 1).
In summary, we demonstrated that it is the negative

electric field rather than a backflow that is a true universal
signature of viscous electron transport. While the negative
field is inherently related to the vorticity of current flow, it
requires neither backflow nor vortices. Further, there is no
one-to-one relation between the spatial distributions of
currents and potentials, making it nontrivial to infer the
current flow from the measured potential. Answer is
provided by application of a weak magnetic field, which
effects a change in the potential distribution proportional to
the current stream function. This opens the door to direct
measurements of viscous electron flow patterns by the well-
developed charge and potential sensing techniques [26,27].
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