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We determine the shear viscosity of the ultracold Fermi gas at unitarity in the normal phase using
hydrodynamic expansion data. The analysis is based on a generalized fluid dynamic framework which
ensures a smooth transition between the fluid dynamic core of the cloud and the ballistic corona. We use
expansion data taken by Joseph, Elliott, and Thomas [Shear Viscosity of a Universal Fermi Gas Near the
Superfluid Phase Transition, Phys. Rev. Lett. 115, 020401 (2015).] and measurements of the equation of
state by Ku et al. [Revealing the superfluid lambda transition in the universal thermodynamics of a unitary
Fermi gas, Science 335, 563 (2012).]. We find that the shear viscosity to particle density ratio just above the
critical temperature is η=njTc

¼ 0.41� 0.11. We also obtain evidence that the shear viscosity to entropy
density ratio has a minimum slightly above Tc with η=sjmin ¼ 0.50� 0.10.
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Introduction.—The dilute Fermi gas at unitarity is a
very attractive physical system for studying the transport
properties of strongly correlated quantum fluids [1–3].
From a theoretical point of view, the unitary Fermi gas is a
parameter-free, scale invariant, and intrinsically quantum-
mechanical many-body system. A lot of interest has
centered on the question of how close the viscosity to
entropy density ratio of this system comes to the proposed
string theory bound η=s ¼ ℏ=ð4πkBÞ [4]. Experimentally,
the unitary Fermi gas can be realized in dilute atomic gases
using Feshbach resonances [5,6]. The experimental control
provided by Feshbach resonances implies that we can study
the transition from the strongly correlated unitary Fermi gas
to weakly coupled Bose and Fermi gases.
In this Letter we focus on the problem of extracting the

shear viscosity of the unitary Fermi gas from experiments
with trapped ultracold gases [7–15]. Our main interest is in
the low-temperature regime, where the density dependence
of the shear viscosity is relevant, and the minimum of η=s
is likely to be achieved. There are two main types of
experiments that are relevant to this problem. The first class
involves measuring the damping rate of collective excita-
tions, and the second focuses on the expansion of the cloud
after removing the trapping potential. From a theoretical
perspective the damping experiments would appear to be
more attractive, because even a very small viscosity leads to
a clear signature in the exponential decay of the collective
mode. In practice, however, the expansion experiments take
place in a cleaner environment and have achieved greater
accuracy. In an expansion experiment what is observed is
the time evolution of the aspect ratio of the cloud.
Hydrodynamic pressure gradients accelerate the cloud
along the short direction, so that the aspect ratio increases
as a function of time. Viscosity counteracts the pressure

gradients, and slows the growth of the aspect ratio. These
flow experiments are very similar to elliptic flow experi-
ments in relativistic heavy ion physics [16–18].
The main difficulty in analyzing these experiments is

that the viscosity ηðn; TÞ is a local quantity that varies with
the density n and temperature T of the cloud, while the
observed aspect ratio is a global property of the trapped gas.
This means that the dependence of the data on initial cloud
energy, particle number, and expansion time has to be
unfolded to determine ηðn; TÞ. An even more significant
problem is that the viscosity is a parameter that appears in
the fluid dynamic description of the cloud. However, fluid
dynamics breaks down in the dilute, dissipative corona of
the gas.
We have recently made significant progress in dealing

with the physics of the dilute corona. We have introduced a
new method, anisotropic fluid dynamics [19–21], that takes
into account the effects of nonhydrodynamic modes. These
modes quickly relax in the dense part of the cloud so that
Navier-Stokes fluid dynamics is recovered. In the dilute
corona nonhydrodynamic modes ensure a smooth transition
to a free-streaming, ballistic expansion. We have checked
numerically that anisotropic fluid dynamics reproduces the
Navier-Stokes equation in the dense limit [19] as well as
numerical solutions of the Boltzmann equation in the dilute
regime [22,23]. We have also shown that the anisotropic
fluid dynamics, combined with the kinetic theory prediction
for the shear viscosity η ¼ 15=ð32 ffiffiffi

π
p ÞðmTÞ3=2 [24], repro-

duces the high-temperature expansion data obtained in [12].
Note that here and in the remainder of the Letter we setℏ and
kB equal to unity.
In this Letter we extend our studies to lower temperature.

For this purpose we fit the expansion data to a systematic
expansion of the viscosity in powers of the density.
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We show that the data clearly demand that the shear
viscosity has nontrivial density dependence. We also show
that the density dependence in the normal phase is quite
smooth, and that the existing data place strong constraints
on η=n near Tc. This study requires several refinements of
our previous work. We extend the fluid dynamic analysis
to three-dimensional systems with no axial symmetry. We
include an accurate parametrization of the measured
equation of state, and a more general functional form of
the shear viscosity.
Anisotropic fluid dynamics.—In this section we briefly

summarize the anisotropic fluid dynamics method [19].
The fluid dynamical variables that characterize a non-
relativistic fluid in the normal phase are the mass density ρ,
the momentum density π⃗ ¼ ρu⃗, and the energy density E.
The equations of motion follow from the conservation laws

D0ρ ¼ −ρ∇⃗ · u⃗; ð1Þ

D0ui ¼ −
1

ρ
∇jðδijPþ δΠijÞ; ð2Þ

D0ϵ ¼ −
1

ρ
∇iðuiPþ δ|Ei Þ: ð3Þ

Here, we defined the comoving time derivative

D0 ¼ ∂0 þ u⃗ · ∇⃗, the energy per mass ϵ ¼ E=ρ, and the
pressure P. We also introduce the energy density in the rest
frame of the fluid, E0 ¼ E − 1

2
ρu⃗2. In order for the

equations to close we have to provide an equation of state
P ¼ PðE0; ρÞ, and constitutive equations for the dissipative
stresses δΠij and the dissipative energy current δ|Ei . For the
unitary Fermi gas scale invariance implies that P ¼ 2

3
E0.

In the Navier-Stokes approximation the dissipative
stresses are expanded to first order in gradients of the
thermodynamic variables. We get δΠij ¼ −ησij with

σij ¼ ∇iuj þ∇jui −
2

3
δij∇⃗ · u⃗ ð4Þ

and δ|Ei ¼ ujδΠij. Scale invariance implies that the bulk
viscosity vanishes. We have also used the fact that in
expansion experiments the effects of heat conduction are of
higher order in the gradient expansion. This is related to the
fact that the initial temperature is constant, and that the
expansion of an ideal gas preserves the isothermal nature of
the temperature profile [25].
In anisotropic fluid dynamics we treat the components of

the dissipative stress tensor as independent fluid dynamical
variables. The symmetries of the trap imply that the stresses
are diagonal. We define anisotropic components of the
pressure, Pa for a ¼ 1, 2, 3, and define

δΠij ¼ diagðΔP1;ΔP2;ΔP3Þ; ð5Þ
where ΔPa ¼ Pa − P. We also define anisotropic compo-
nents of the energy density Ea such that E ¼ P

aEa. The

anisotropic components of the energy per mass satisfy the
equation of motion [19]

D0ϵa ¼ −
1

ρ
∇i½δiauiPþ ðδ|EaÞi� −

P
2ηρ

ΔPa; ð6Þ

where ϵa ¼ Ea=ρ and ðδ|EaÞi ¼ δiaujδΠij. The anisotropic
pressure is related to the anisotropic energy density by an
equation of state. In the case of a scale-invariant fluid
we have PaðE0

aÞ ¼ 2E0
a with E0

a ¼ Ea − 1
2
ρu2a. Then P ¼

1
3

P
aPa satisfies the isotropic equation of state, and Eq. (6)

gives the isotropic equation of energy conservation Eq. (3)
when summed over a. In our previous work we have
described a three-dimensional fluid dynamics code that
solves Eqs. (1)–(3) and Eq. (6) [19,25]. This code is based
on the piecewise parabolic method of Colella and
Woodward [26,27].
We have shown that in the limit of small viscosity,

ηð∇⃗ · u⃗Þ ≪ P, the anisotropic pressure terms relax to the
viscous stress tensor in Navier-Stokes theory, ΔPa ¼
−ησaa. We observe that in the opposite limit, that of very
large viscosity, Eq. (6) becomes a conservation law. This
conservation law ensures that anisotropic fluid dynamics
reproduces the free-streaming limit. Finally, we have
checked that anisotropic fluid dynamics provides a very
accurate representation of numerical solutions of the
Boltzmann equation in the limit that two-body scattering
dominates [23].
In general the viscosity is a function of density and

temperature. In the unitary limit scale invariance implies
that ηðn; TÞ ¼ ðmTÞ3=2fðnλ3Þ, where λ ¼ ½ð2πÞ=ðmTÞ�1=2
is the de Broglie wavelength. In this Letter we will expand
the function fðxÞ in powers of the diluteness of the gas

ηðn; TÞ ¼ η0ðmTÞ3=2f1þ η2ðnλ3Þ þ η3ðnλ3Þ2 þ � � �g: ð7Þ

We note that the leading term is purely a function of
temperature, the first correction is solely a function of
density, and higher-order terms depend on increasing
powers of the density. In general this expansion is not
expected to be useful near Tc, but we will show that terms
that scale as ðnλ3Þ2 and higher are surprisingly small.
Experimental parameters.—We will analyze the expan-

sion data reported in [7]. This work represents the most
complete set of elliptic flow measurements for the unitary
Fermi gas over a wide range of temperatures currently
available. The gas is released from a harmonic trap Vext ¼
1
2
mω2

i x
2
i with trap frequencies ðωx;ωy;ωzÞ ¼ ð2πÞð2210;

830; 64.3Þ Hz. After the optical trap is turned off there
is a residual magnetic bowl characterized by ωmag ¼
2π × 21.5 Hz. The total energy per particle of the gas
varies between E=ðNEFÞ ¼ ð0.56–1.91Þ. Here, N is the
number of particles and EF ≡ ð3NÞ1=3ω̄, where ω̄ is the
geometric mean of the trap frequencies. The energy and
temperature of the cloud are extracted using absorption
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images and an equation of state E0ðn; TÞ. We describe a
parametrization of the equation of state measured by the
MIT group [28] in the Supplemental Material [29], see
also [25,30,31]. Based on this equation of state we find that
the critical energy where superfluidity occurs at the center
of the trap is E=ðNEFÞ ¼ 0.70. In the high-temperature
limit many relations simplify. For example, the total cloud
energy is given by E ¼ 3NT. We will characterize the
initial temperature using the dimensionless ratio T=TF,
where TF ¼ EF.
Scaling of the aspect ratio with the initial energy.—

Expansion experiments measure the time evolution of the
aspect ratio ARðtÞ for different initial energies and particle
numbers. The experiment of Joseph et al. [7] focuses on the
ratio σx=σy, which reaches its asymptotic behavior more
quickly than σx=σz or σy=σz. The radii σi are determined
from a Gaussian fit to two-dimensional absorption images.
As noted in [22] it is important to follow this definition
when analyzing the data using transport theory. In particu-
lar, there is a significant difference between the ratio of rms
radii,

ffiffiffiffiffiffiffiffi
hx2i

p
=

ffiffiffiffiffiffiffiffi
hy2i

p
, and the ratio of Gaussian fit radii,

σx=σy. This is the case even if the initial density distribution
is a Gaussian.
Joseph et al. [7] observed that the main information

about the density and temperature dependence of ηðn; TÞ is
not carried by the time dependence of ARðtÞ for fixed initial
energy, but by the dependence of ARðt�Þ at a fixed time t�
on the initial energy. In Fig. 1 we show ARðt�Þ ¼ σx=σy as a
function of E=ðNEFÞ at t� ¼ 1.2 msec. Note that the plot
covers a fairly narrow range in AR. Individual data points
are more accurate than previously published data, which
spanned a much larger range in aspect ratio.
A difficulty in interpreting the results is that the data

points correspond to a range of particle numbers. The data

are clustered around a mean N̄ ¼ 1.94 × 105, and the
variance in N1=3, which is relevant to the effective viscosity,
is about 7%. We show all the data points on the same plot,
but when performing hydrodynamic fits we use the correct
number of particles for each individual data point.
Figure 1 shows a fit to the data based on the high-

temperature theory only. This means that we use the free
gas equation of state, and only the first coefficient, η0, in the
virial expansion of the shear viscosity. The best fit to the
high-temperature data gives η0 ¼ 0.301 which is somewhat
higher than the value η0 ¼ 0.264 predicted by kinetic
theory. The best-fit value shifts slightly if the full equation
of state is used, but the shape of ARðt�Þ as a function of
E=ðNEFÞ does not change. We observe that the data at
lower energy clearly demand a more complicated func-
tional form of the shear viscosity.
Figure 2 shows a fit to the data above the superfluid

transition based on the full equation of state and an
expansion of the shear viscosity up to second order in
density. The best fit is

η0 ¼ 0.265� 0.02; η2 ¼ 0.060� 0.02; ð8Þ

and η3 ¼ −ð2� 8Þ × 10−4. We observe that the n2 coef-
ficient is consistent with zero within error bars. We also find
that the fit is stable with respect to including higher-order
terms in n. The χ2=Ndof of the fit is of order unity,
indicating that this simple model provides a very good
representation of all the data in the entire regime above the
superfluid phase transition. We note that η0 agrees to better
than 1% with the kinetic theory prediction η0 ¼ 0.264.
Conclusions.—Our determination of η=n for the homo-

geneous Fermi gas is shown in Figs. 3 and 4. The result is
shown as a function of T=T loc

F , where T loc
F ¼ k2F=ð2mÞ is the

local Fermi temperature of the gas. The best fit to the data,
shown as the thick red line in Fig. 3, is

0.6 0.8 1.0 1.2 1.4 1.6 1.8

1.25
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1.35

1.40

1.45

1.50

FIG. 1. Aspect ratio AR ¼ σx=σy at t� ¼ 1.2 msec as a function
of the energy E=ðNEFÞ of the cloud. Data (gray points) compared
to hydrodynamic fits based on the equation of state of a free
gas. The solid red line corresponds to the shear viscosity η ¼
η0ðmTÞ3=2 predicted by kinetic theory, and the dashed and
dotted line show the �25% and �50% range in η0. The thick
green line is the best fit to the high-energy data, corresponding to
η0 ¼ 0.301.

0.6 0.8 1.0 1.2 1.4 1.6 1.8

1.25

1.30

1.35

1.40

1.45

1.50

FIG. 2. Aspect ratio AR ¼ σx=σy at t� ¼ 1.2msec as a function
of the energy E=ðNEFÞ of the cloud. Data (gray points) compared
to hydrodynamic fits based on the measured equation of state.
The red short-dashed line shows the high temperature fit, the blue
dashed line includes density corrections, and the green solid line
contains a density squared term.
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η=n ¼ 2.773x3=2 þ 0.251 − 0.0013x−3=2; ð9Þ
where x ¼ T=T loc

F . The coefficients in Eq. (9) are given
by the central values of η0, η2, η3 normalized by the density
n. The local Fermi momentum kF is defined in terms
of the density of the gas, n ¼ k3F=ð3π2Þ. We show the
reconstruction for temperatures above the critical temper-
ature Tc ¼ 0.167ð13ÞT loc

F [28]. We find that the value of the
viscosity at Tc is η=njTc

¼ 0.41� 0.11. We have not
attempted to reconstruct the shear viscosity below Tc,
since a proper treatment of this regime requires superfluid
hydrodynamics.
For comparison the gray data points show the recon-

structed values of η=n obtained in the experimental work
of Joseph et al. [7]. These results are based on the same
expansion data, but involve a number of assumptions [34].
The main assumption is that there is a critical radius Rcrit

i so

that the atomic cloud inside this radius can be described as a
viscous fluid, and the particles outside the radius are a
noninteracting gas. The critical radius is assumed to be a
constant fraction of the cloud size. The overall constant is
adjusted to reproduce the expected behavior of the high-
temperature viscosity, η ∼ η0ðmTÞ3=2. This implies that the
agreement of the data points with kinetic theory for large
T=T loc

F is not a result, but an input. In contrast, the
agreement of our reconstruction with kinetic theory is a
nontrivial result. There is some discrepancy between the
two reconstructions in the regime T ¼ ð0.2–1.0ÞT loc

F .
In this regime our result for η=n is systematically lower.
This makes sense if one assumes that as the temperature is
lowered and the viscosity drops the effective fluid radius
increases. This implies that assuming a constant radius of
the fluid core leads to an overestimate of the viscosity. It is
interesting that directly at Tc the two reconstructions agree.
We also show the T-matrix calculation of Enss et al. [32],

which agrees quite well with our reconstructed viscosity
near Tc. It will be interesting to study the physical
consequences of this result, for example, possible impli-
cations for quasiparticle models. We also show the lattice
calculation of Wlazlowski et al. [33]. The calculation does
not match the shape of our reconstruction, and has a
substantially smaller η=njTc

.
Finally, Fig. 5 shows the ratio of shear viscosity to

entropy density, based on our reconstruction of η=n and the
measurement of s=n by the MIT group [28]. The result is
compared to high and low temperature predictions for η=s
in kinetic theory [24,35]. We find a shallow minimum
of η=sjmin ¼ 0.50� 0.10 slightly above Tc. The mini-
mum is related to the fact that the entropy per particle
drops significantly as Tc is approached from above,
whereas no structure is seen in η=n. We note that at present
we can only weakly exclude (at about 1σ) a minimum in
η=s at or below Tc. A minimum in η=s above Tc was
predicted in [36], but is in tension with the Monte Carlo
data in [33].

0.5 1.0 1.5 2.0
0

2

4

6

8

FIG. 3. The reconstructed ratio η=n as a function of T=T loc
F for a

homogeneous gas. The local Fermi temperature is defined as
T loc
F ¼ k2F=ð2mÞ where kF is defined via the density of the gas,

n ¼ k3F=ð3π2Þ. The red line shows the density expansion together
with the error band described in the text. The curves terminate at
Tc. The gray dots show the reconstruction obtained in [7], and the
dashed line shows the T-matrix calculation of Enss et al. [32].
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FIG. 4. Same as Fig. 3, zooming in on the low-temperature
regime. Our analysis (red band) is compared to the results (gray
points) obtained in [7], the T-matrix calculation (dashed line)
of Enss et al. [32], and the lattice calculation (green band) of
Wlazlowski et al. [33].
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FIG. 5. Low-temperature behavior of the shear viscosity to
entropy density ratio η=s as a function of T=T loc

F . Our analysis
(red band) is compared to the high and low temperature
predictions from kinetic theory, see [24,35].
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