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Many natural and engineering systems are simultaneously subjected to a driving force and a stabilizing
force. The interplay between the two forces, especially for highly nonlinear systems such as fluid flow, often
results in surprising features. Here we reveal such features in three different types of Rayleigh-Bénard (RB)
convection, i.e., buoyancy-driven flowwith the fluid density being affected by a scalar field. In the three cases
different stabilizing forces are considered, namely (i) horizontal confinement, (ii) rotation around a vertical
axis, and (iii) a second stabilizing scalar field. Despite the very different nature of the stabilizing forces and the
corresponding equations of motion, at moderate strength we counterintuitively but consistently observe an
enhancement in the flux, even though the flow motion is weaker than the original RB flow. The flux
enhancement occurs in an intermediate regime in which the stabilizing force is strong enough to alter the flow
structures in the bulk to a more organized morphology, yet not too strong to severely suppress the flow
motions. Near the optimal transport enhancements all three systems exhibit a transition from a state in which
the thermal boundary layer (BL) is nested inside the momentum BL to the one with the thermal BL being
thicker than themomentumBL. The observed optimal transport enhancement is explained through an optimal
coupling between the suction of hot or fresh fluid and the corresponding scalar fluctuations.
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It is very common in nature and engineering settings that,
in addition to a driving force, a system is also subjected to a
stabilizing force. For a highly nonlinear system, the presence
of the stabilizing force may induce surprising phenomena.
For instance, Rayleigh-Bénard (RB) convection, which
is in nature commonly encountered [1–4] buoyancy driven
unstably stratified flow, often experiences a stabilizing
mechanism. The first example is RB convection under
lateral geometrical confinement (CRB). Here the buoyancy
driving interacts with the viscous force from the sidewalls.
The second example is RB convection under rotation (RRB)
in which the Coriolis force is well known to have a
stabilizing effect [5–7]. Our third example is double dif-
fusive convection (DDC) [8], where the fluid density is
determined by two scalars with different molecular diffu-
sivities, such as temperature and salinity in the ocean. We
consider DDC in the fingering regime, in which the flow is
driven by a destabilizing salinity gradient and partly stabi-
lized by the temperature gradient, as in the tropical ocean.
All these three systems are of great importance in

astrophysics [9–14], geophysics [15,16], oceanography
[17–20], and engineering applications [21].
In these three systems, the stabilizing forces are

completely different and correspondingly different physi-
cal parameters are required to quantify the degree of
stabilization. In CRB, it is the reciprocal of the width-to-
height ratio 1=Γ that characterizes the relative strength of
stabilizing [22–24]. In RRB, the stabilization is charac-
terized by the ratio of Coriolis force to buoyancy, which is
the reciprocal Rossby number 1=Ro [25–28]. In DDC, it is
the ratio of the buoyancy force induced by temperature
gradient to that by the salinity gradient, i.e., the density
ratio Λ [29,30], that characterizes the relative strength of
stabilization. Since the stabilizing mechanisms in the three
systems are very different, one would expect that CRB,
RRB, and DDC will behave very differently when sub-
jected to the respective stabilizing forces. In this Letter,
however, we show that within the parameter range
explored the salient features in the three seemingly
different systems are universal and can all be explained
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by coherent structure manipulation and boundary layer
crossing and therefore can be understood in terms of a
unifying framework.
Our analysis is based on data sets obtained from direct

numerical simulations of the three systems. For the sim-
ulations, the incompressible Navier-Stokes equation within
the Oberbeck-Boussinesq approximations and the convec-
tion-diffusion equation(s) are solved for velocities and the
scalar field(s), where the Coriolis force and the additional
buoyancy gradient generated by a stable temperature
gradient are added for RRB and DDC, respectively. The
physical quantities are nondimensionalized by the cell
height H, the global temperature (or salinity) difference
ΔT (or ΔS), and the free-fall velocity. The data are taken
from our previous simulations reported in Refs. [31–33] for
CRB and Refs. [30,34,35] for DDC, respectively. The RRB
simulations were conducted by using the numerical solver
described in Refs. [36]. The systems are characterized by
the Rayleigh number Ra ¼ βζgΔζH3=νκζ and the Prandtl
number Pr ¼ ν=κζ, where g, β, κ, and ν are the gravitational
acceleration, expansion coefficient, kinematic viscosity,
and molecular diffusivity with the subscript ζ being T
(temperature) or S (salinity). Additionally, the Lewis
number Le ¼ κT=κS is defined for DDC. For each system
results for Ra ¼ 107, 108, and 109 are presented. For each
Ra, simulations were conducted for a wide range of 1=Γ,
1=Ro, and Λ. The Prandtl number is Pr ¼ 4.38 in CRB, 6.4
in RRB, and 700 (salinity Pr) in DDC. Additionally, in
DDC we set the temperature Prandtl number at 7. In RRB
and DDC periodic boundary conditions are applied in the
horizontal directions and the box size is set to be much
larger than the horizontal width of typical flow structures.

Figure 1 plots the Nusselt number Nu and Reynolds
number Re versus the degree of stabilization in the three
systems. In CRB and RRB, the heat transport is considered,
while in DDC the transport of salinity is considered instead.
For the three systems, Nu is evaluated by three different
methods introduced in [37,38] while Re is based on the rms
of the velocity averaged over the whole domain and
time. As the strength of stabilization increases, the global
transport behavior undergoes a transition from a typical RB
regime to the regime dominated by the stabilizing force.
However, earlier studies in CRB [22,24], RRB [26,27,39],
and DDC [30,35] separately revealed an intermediate
regime with enhanced scalar transport, and in CRB and
DDC even the decoupling of scalar and mass transport
was observed. Figures 1(a)–1(c) show the normalized Nu
against Γopt=Γ for CRB, Roopt=Ro for RRB, and Λ=Λopt for
DDC, respectively. Here 1=Γopt, 1=Roopt, and Λopt are the
values of the parameters for which Nu attains its maximum
[40]. It is clearly seen that moderate stabilization for all
systems can enhance the global heat or salinity transport.
Given that the flow weakens monotonically with increasing
stabilization [Figs. 1(d)–1(f)], the enhancement is non-
trivial and counterintuitive. By comparing the three systems
side by side, we can conclude that the leading effect of
stabilization is similar: Under moderate strength of stabi-
lization, Nu first increases with increasing degree of
stabilization until an optimal state is reached and then
excessive stabilization eventually leads to the sharp decline
in Nu. From the similarity recognized here we expect that
there might be some unifying mechanisms for the systems
under distinct forms of stabilizing forces. Indeed a more
fundamental understanding on this class of stabilized turbu-
lent flows emerges in this Letter.
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FIG. 1. Nusselt number Nu or NuS and Reynolds number Re versus Γopt=Γ for CRB in (a) and (d), Roopt=Ro for RRB in (b) and (e)
and Λ=Λopt for DDC in (c) and (f). Both quantities are normalized by the value obtained from cases 1=Γ ¼ 1, 1=Ro ¼ 0, or Λ ¼ 0

(represented by Nu0 and Re0 in CRB and RRB and by NuRBS and ReRB in DDC).
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We first examine the flow morphologies at the middle
vertical plane with weak and moderate stabilization.
Figures 2(a)–2(c) show the thermal (or salinity) structures
at 1=Γ ¼ 2, 1=Ro ¼ 1, and Λ ¼ 0.01 that correspond to
the state with moderate scalar transport enhancement and
thus the effects of confinement, rotation, and temperature
stabilization may be considered to be weak in the respective
systems. As seen from Figs. 2(a) and 2(b), for CRB andRRB
heat is carried by the mushroomlike plumes that are detach-
ing from the top and bottom boundary layers. When the
thermal plumes propagate vertically, their heat content
diffuses to the turbulent bulk progressively and their coher-
ence is lost when reaching the opposite boundary layers.
In DDC, the salinity structures appear to be more slender
than the thermal structures in CRB and RRB because of
the large salinity Prandtl number. It is clear from the above
observation that under very weak stabilization forces the
morphologies of the thermal and salinity structures are
similar to that in classical Rayleigh-Bénard flow.

In contrast to the weakly stabilized cases, the flow
morphologies can change considerably under stronger
stabilization. Figures 2(d)–2(f) show the morphologies
at 1=Γ ¼ 10, 1=Ro ¼ 7, and Λ ¼ 4, which are cases with
maximum Nusselt number in the three systems. As the
bulk becomes less turbulent by the respective stabilizing
forces, highly coherent structures that extend over the entire
height of the cell are formed. We remark that the coherent
structures in CRB are still wavy at the optimal state.
However, under even stronger confinement the system
enters the so-called severely confined regime, with finger-
like, long-lived plume columns [42] similar to those
observed in RRB and DDC. The morphological behavior
of the plumes may be quantified by the portion of area
Apl=A covered by the cold or salty fluid at the edge of the
bottom thermal or salinity BL as shown in Figs. 2(g)–2(i).
It is seen that moderate strength of stabilization can lead to
larger portions of cold or salty plumes covering the bottom
plate as compared to the weakly stabilized cases. It also
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FIG. 2. Instantaneous scalar fields for the three systems (a) 1=Γ ¼ 2, (b) 1=Ro ¼ 1, (c) Λ ¼ 0.01, (d) 1=Γ ¼ 10, (e) 1=Ro ¼ 7, and
(f) Λ ¼ 4 (all at Ra ¼ 108). The scalar fields are taken at the middle vertical plane and it is midway along the confinement direction in
CRB. Here the reddish (bluish) color represents the hot (cold) fluid in CRB and RRB, and the fresher and saltier fluid in DDC. Note that
in RRB and DDC, only part of the periodic domain is shown here. Plume coverage Apl=A evaluated at the edge of the thermal or salinity
BL versus (g) Γopt=Γ, (h) Roopt=Ro, and (i) Λ=Λopt where Apl is the area covered by cold or saline fluid and A is the total area (see
Supplemental Material [41] for the details). Here black (red) dashed lines indicate the cases shown in the top (middle) panel.
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shows that a too strong stabilization can eventually cause
the rapid drop in plume coverage, which coincides with the
decline of the global heat or salinity transport. It is therefore
clear that highly coherent thermal or salinity plumes are
crucial to the enhanced scalar transport, since more
coherent structures can better preserve their heat or salt
content against thermal or molecular diffusion when
traveling to the opposing BL.
We have thus revealed that a hallmark of the stabilizing-

destabilizing (S-D) turbulent flow is the formation of highly
coherent structures. These structures can extend over the
height of the cell. In all three systems, the plumes grow from
the boundary layer regions that carry the high temperature
or salinity anomaly. So we now turn to the effects of the
stabilizing mechanism on the boundary layer behaviors.
Figures 3(a)–3(c) show the ratio (λT=λp or λS=λp) of the
thermal or salinity boundary layer thickness over the
momentum boundary layer thickness, where the thermal
(or salinity) BL thickness λT (or λS) is defined by the first
peak of the temperature (or salinity) standard deviation
profile from the bottom and the momentum BL λp is defined
by the position of the first peak of the ð∂xuÞ2 þ ð∂yvÞ2 þ
ð∂zwÞ2 profile, i.e., the location with maximum stress. Note

that the momentum BL is defined through the profile of
the stress, which measures fluid suction, and not through
the velocity profile (see Supplemental Material [41] for the
details). With this definition, which better reflects the
physical mechanism at hand here, the edge of momentum
BL is the location with the strongest upward suction of hot
or fresh fluid near the bottom plate, which is directly related
to the heat or salt transfer. The figures show that the BL
thickness ratios increase with the increase of stabilization
forces and the momentum BL eventually becomes thinner
than the thermal or salinity BL. In Figs. 3(d)–3(f) we plot
the plume coverage versus the ratio of BL thickness ratio
λT=λp or λS=λp. It is clear that the plume coverage reaches a
maximum (corresponding to the maximum transport
enhancement) when the thickness ratio becomes larger than
a certain value of order unity and then declines sharply
afterwards. To better understand this behavior, we recall that
in thermal convection temperature fluctuations reach maxi-
mum value at the edge of the thermal BL and then decrease
towards the plate [43,44]. From Figs. 3(g)–3(i) one can see
that as the momentum BL thickness decreases and becomes
close to that of the thermal or salinity one, the temperature or
salinity fluctuations reach their maxima. This enables the
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FIG. 3. Ratio of the thermal or salinity boundary layer thickness over momentum one versus (a) Γopt=Γ, (b) Roopt=Ro, and (c) Λ=Λopt.
Plume coverage Apl=A versus the relative thickness λT=λp for CRB in (d) and RRB in (e), λS=λp for DDC in (f). Normalized temperature
or salinity standard deviation at the edge of momentum boundary layer versus the relative thickness in (g)–(i).
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coupling of the strongest suction with the maximal scalar
fluctuations. It is this coupling that facilitates the emission of
coherent structures that is directly responsible for the heat or
salt transport enhancement. Once the thickness ratio is much
larger than 1, the strongest fluid suction occurs at a layer
with largely suppressed scalar fluctuations, i.e., amore stable
BL, which explains the subsequent decline in scalar trans-
port.We remark that in some previous studies [25,45–47] BL
crossings have been proposed to understand the transition
to the rotationally dominated regime in RRB. The present
study goes beyond this and enriches the classical picture;
it shows that BL crossing leads to an optimal coupling
between the suction of hot or fresh fluid and the corre-
sponding scalar fluctuations. Our result also explains why
there is no enhancement for those cases in CRB, RRB, or
DDC with low Pr or Le numbers [23,30,48], as then the
momentum BL is already nested deeply in the thermal or
salinity one.
In summary, we have investigated RB flow with a

stabilization force using three examples, i.e., the viscous,
Coriolis, and negative buoyancy forces. For all three flows
we observed significant transport enhancement for mod-
erate values of the stabilizing force. Despite the fact that
the nature of the three stabilizing forces is very different,
our analysis shows that these forces can similarly influ-
ence the coherent structures and the boundary layers. Our
study therefore reveals a universal mechanism under-
pinning scalar transport enhancement in the three types
of S-D flows within the parameter range explored. For an
appropriate strength of the stabilizing force, the flow
structures become more coherent with the vertical motions
severely suppressed, resulting in a higher efficiency of
scalar transport. It is highly desirable to further investigate
this phenomenon for higher values of Ra and Pr. We stress
that this class of flow might be generalized to other
situations involving different stabilizing forces, such as
the Lorentz force in convection with conducting fluid
under vertical magnetic field. The ability to understand
similar phenomena occurring in different systems under a
unified framework has been a hallmark of physics
research. The present study of stabilizing-destabilizing
flows provides one such example and may therefore
inspire work on other systems.
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