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We study spatial spin and density self-ordering of a two-component Bose-Einstein condensate via
collective Raman scattering into a linear cavity mode. The onset of the Dicke superradiance phase transition
is marked by a simultaneous appearance of a crystalline density order and a spin-wave order. The latter
spontaneously breaks the discrete Z2 symmetry between even and odd sites of the cavity optical potential.
Moreover, in the superradiant state the continuousUð1Þ symmetry of the relative phase of the two condensate
wave functions is explicitly broken by the cavity-induced position-dependent Raman coupling with a
zero spatial average. Thus, the spatially averaged relative condensate phase is locked at either π=2 or −π=2.
This continuous symmetry breaking and relative condensate phase locking by a zero-average Raman field
can be considered as a generic order-by-disorder process similar to the random-field-induced order in the
two-dimensional classical ferromagneticXY spinmodel. However, the seed of the random field in our model
stems from quantum fluctuations in the cavity field and is a dynamical entity affected by self-ordering. The
spectra of elementary excitations exhibit the typical mode softening at the superradiance threshold.
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Introduction.—Loading Bose-Einstein condensates
(BECs) into optical potentials created by dynamic cavity
fields has opened a new avenue in ultracold atomic physics
[1–4], paving the way for the realization of novel phenom-
ena [5]. Seminal results include the Dicke superradiance
phase transition [6–8], and quantum phase transitions
between a superfluid, superradiant Mott insulator, den-
sity-wave state, lattice supersolid, and supersolid phasewith
a broken continuous Uð1Þ symmetry due to the interplay
between cavity-mediated long-range interactions and short-
range collisional interactions [9–11]. On the theoretical
side, in addition to studying conventional quantum optics
and self-ordering aspects of coupled quantum-gas–cavity
environments [12–20], many proposals have been put
forward to simulate and realize exotic phenomena for
ultracold atoms via coupling to dynamic cavity fields,
including synthetic gauge fields [21–26], topological states
[27–30], and superconductor-related physics [31].
In this Letter we study the Dicke superradiance phase

transition for a generalized atomic system with both
internal [32–36] and external [6–8] quantized degrees of
freedom, i.e., a spinor BEC, coupled to a single mode of a
linear cavity (see Fig. 1). The ultracold four-level atoms are
transversely illuminated by two sufficiently far red-detuned
pump lasers polarized along the cavity axis x so that to
induce near resonant two-photon Raman transitions
between the lowest two internal atomic states via the same
cavity mode with the transverse polarization along z as in
Ref. [36]. After adiabatic elimination of the atomic excited
states, the system reduces to a two-component BEC
coupled via a cavity-induced position-dependent Raman
coupling with a zero spatial average.

In contrast to conventional self-ordering [5,6], the con-
densate densities in the superradiant phase exhibit modu-
lations with the half cavity-wavelength λc=2 periodicity.
However, the discrete Z2 symmetry—the symmetry
between even and odd lattice sites and positive and negative
cavity-field amplitude—is spontaneously broken at the
onset of the Dicke superradiance phase transition by a
λc-periodic spin ordering. Despite filling all sites, the cavity
field attains a nonzero value as it is collectively driven by the

FIG. 1. Schematic view of a transversely pumped one-dimen-
sional spinor BEC inside a cavity. The inset depicts the internal
atom-photon coupling scheme in double Λ configuration. The first
(second) pump laser solely induces the transition↑↔1 (↓↔2)with
the Rabi frequency Ω1 (Ω2), while the transitions ↓↔1 and ↑↔2
are coupled to the cavity mode with the identical strength GðxÞ.
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atomic spin density. The continuous Uð1Þ symmetry asso-
ciated with the freedom of the relative phase of two
condensate wave functions is explicitly broken in the
superradiance state by the cavity-induced position-
dependent Raman coupling with the zero spatial average.
Thereby the relative condensate phase varies in space with
the spatial average of eitherπ=2 or−π=2 in order tominimize
the total energy and yield a nonzero cavity field [37].
Owing to this continuous symmetry breaking and relative

condensate phase locking by the zero-average Raman field,
the self-organization in our model can be considered as an
order-by-disorder process [38], equivalent to the sponta-
neous ordering in the two-dimensional classical ferromag-
netic XY spin model with a uniaxial random magnetic field
[39–41]. The relative condensate phase plays the role of
the spin angle and the position-dependent Raman field with
a zero spatial average mimics the random magnetic field.
Nonetheless, the seed of the random field in ourmodel stems
from quantum fluctuations and the random field itself is a
dynamical entity affected by the self-ordering.
Model.—Consider four-level bosonic atoms inside a linear

cavity illuminated in the transverse direction by two external
standing-wave pump lasers as depicted in Fig. 1. A tight
confinement along the transverse directions is assumed to
freeze transverse motion. Two-photon Raman coupling is
induced via the transition ↑↔ 1 (↓ ↔ 2) coupled to the first
(second) external pump laser with the Rabi frequencyΩ1 (Ω2),
along with the transitions ↓↔ 1 and ↑↔ 2 coupled to same
empty cavity mode with identical coupling strength GðxÞ ¼
G0 cosðkcxÞ. This constitutes a double Λ configuration, where
jτi ¼ fj↓i; j↑ig are the desired ground pseudospin states
and fj1i; j2ig are electronic excited states, with energies
fℏω↓¼0;ℏω↑;ℏω1;ℏω2g. The pump and cavity frequencies,
respectively, fωp1;ωp2g and ωc are assumed to be far red
detuned from the atomic transition frequencies, that is, Δ1 ≡
ðωp1 þ ωp2Þ=2 − ω1 andΔ2 ≡ ωp2 − ω2 are large.However,
two-photon Raman transitions are close to resonant:
ωc − ωp1 ≈ ω2p − ωc ≈ ω↑. The excited states then quickly
reach steady states with negligible populations and can be
adiabatically eliminated to obtain an effectivemodel describing
the two atomic pseudospin states coupled to the cavity field.
At the mean-field level, the system is described by a set

of three coupled equations for the cavity-field amplitude
αðtÞ ¼ jαðtÞjeiϕαðtÞ and atomic condensate wave functions
ψτðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nτðx; tÞ

p
eiϕτðx;tÞ [42]:

i
∂
∂t α ¼

�
−Δc − iκ þ
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τ¼↓;↑
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cos2ðkcxÞnτdx

�
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þ η

Z
cosðkcxÞðψ�

↓ψ↑ þ ψ�
↑ψ↓Þdx;

i
∂
∂tψ↓ ¼

�
−

ℏ
2m

∂2

∂x2 þ U↓jαj2cos2ðkcxÞ
�
ψ↓

þ ηðαþ α�Þ cosðkcxÞψ↑;

i
∂
∂tψ↑ ¼

�
−

ℏ
2m

∂2

∂x2 þ ~δþ U↑jαj2cos2ðkcxÞ
�
ψ↑

þ ηðαþ α�Þ cosðkcxÞψ↓: ð1Þ
Here, ~δ≡ω↑−ðωp2−ωp1Þ=2þΩ2

1=Δ1−Ω2
2=Δ2 is the Stark-

shifted two-photon detuning, U↓ð↑Þ ≡ G2
0=Δ1ð2Þ is the maxi-

mum depth of the cavity-generated optical potential per
photon for the spin-down (spin-up) atoms [or the maximum
cavity-frequency shift per a spin-down (spin-up) atom],
η≡ G0Ω1=Δ1 ¼ G0Ω2=Δ2 is the balanced Raman-Rabi
frequency (or the effective cavity pump strength), and
Δc ≡ ðωp1 þ ωp2Þ=2 − ωc. The decay of the cavity mode
has been modeled as the damping term −iℏκα, with κ being
the decay rate. Two-body contact interactions between atoms
have been assumed to be negligible for the sake of simplicity.
When α ≠ 0, only the total number of the particles N ¼P

τ

R
nτðxÞdx ¼ P

τNτ is conserved due to the effective
Raman coupling between the two condensates.
The total energy of the system can be expressed as E ¼

−ℏΔcjαj2 þ
R
EðxÞdx, where the energy-functional density

is given by

EðxÞ ¼ ℏ2

2m
ðj∂xψ↓j2 þ j∂xψ↑j2Þ þ ℏ~δn↑

þ ℏjαj2cos2ðkcxÞðU↓n↓ þ U↑n↑Þ
þ 4ℏηjαj ffiffiffiffiffiffiffiffiffiffi

n↓n↑
p

cosðkcxÞ cosϕα cosΔϕ; ð2Þ
with Δϕ≡ ϕ↓ − ϕ↑. As can be seen from Eq. (2), in
the absence of α the system possesses full translation
symmetry T and Uð1Þ ×Uð1Þ global symmetry represent-
ing the freedom of total and relative phases of the two
condensate wave functions. A nonzero cavity field results
in a position-dependent Raman field with zero meanR λc
0 ηðαþ α�Þ cos ðkcxÞdx ¼ 0 over one cavity wavelength
λc ¼ 2π=kc, and reduces the T ×Uð1Þ × Uð1Þ symmetry
into a Z2 ×Uð1Þ symmetry. The discrete Z2 symmetry
represents the invariance of the system under the trans-
formation x → xþ λc=2 and ϕα → ϕα þ π. The Uð1Þ sym-
metry represents the freedomof the total phaseϕ↓ þ ϕ↑ (i.e.,
the conservation of the total particle number): a simultaneous
rotation of both condensate phases by an arbitrary constant
phase, ϕτ → ϕτ þ φ, leaving Δϕ invariant. Note that the
Uð1Þ symmetry associated with the freedom of the relative
phase Δϕ of the two condensate wave functions is none-
theless explicitly broken by the last term in Eq. (2).
Considering solely this term, the minimization of the energy
amounts to the constraint cosðkcxÞ cosϕα cosΔϕ < 0. This
in turn imposes a position-dependent constraint onΔϕ, as the
phase ϕα of the cavity-field amplitude is constant over the
entire space. Nonetheless, the kinetic-energy (i.e., first two)
terms compete with this Raman coupling term and favors
wave functions with uniform phases.
Self-ordering and symmetry breaking.—We numerically

solve Eqs. (1), assuming that the cavity-field amplitude
quickly reaches its steady state,
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α ¼ η
R
cosðkcxÞ½ψ�

↓ðxÞψ↑ðxÞ þ ψ�
↑ðxÞψ↓ðxÞ�dx

Δc þ iκ −
P

τUτ

R
cos2ðkcxÞnτðxÞdx

: ð3Þ

One can identify Θ≡ R
cosðkcxÞðψ�

↓ψ↑ þ H:c:Þdx as an
order parameter. Unlike normal self-ordering in a single
component BEC, here the cavity-field amplitude is coupled
to the atomic spin polarization, rather than atomic density.
That is, the scattering of pump-laser photons into the cavity
mode is accompanied by the atomic spin flip ↑ ↔ ↓ and
�ℏkc momentum kick along the x direction.
Using a self-consistent imaginary-time propagation

method, we find the ground-state condensate wave func-
tions ψτðxÞ and the steady-sate cavity-field amplitude α.
Below a threshold pump strength ηc, the cavity mode is
empty and the condensate wave functions are uniform, with
arbitrary phases. By increasing the effective pump strength
above the threshold ηc, the quantum fluctuations in the
condensates trigger a constructive scattering of pump-laser
photons into the cavity mode via the two-photon Raman
processes. These cavity photons in turn stimulate the
Raman processes, leading into a random-field-induced
runaway ordering process seeded by quantum fluctuations.
The results are presented in Figs. 2 and 3 for the lossless

cavity limit (κ ¼ 0). In Fig. 2, the solid black curve shows
the scaled cavity-field amplitude α=

ffiffiffiffi
N

p
as a function of the

dimensionless effective pump strength
ffiffiffiffi
N

p
η=ωr for Δc¼

−10ωr, NU↓¼−2ωr, NU↑¼−ωr, and ~δ¼0.5ωr, with
ωr ¼ ℏk2c=2m being the recoil frequency. The initial con-
dition for the fraction of atoms in each state is set to f↓≡
N↓=N¼0.8 and f↑≡N↑=N¼0.2 (see also the discussion

on elementary excitations in the following). For the given
parameters, the superradiance phase transition occurs at the
critical pump strength

ffiffiffiffi
N

p
ηc ≈ 2.6ωr, where the symmetry

between α and −α is spontaneously broken.
The corresponding condensatewave functions ψτðxÞ deep

in the superradiance phase are shown in Fig. 3 for
ffiffiffiffi
N

p
η ¼

3.2ωr and the other parameters as in Fig. 2. The black solid
(gray dashed) curve represents ψ↑ (ψ↓). Although the spin-
down condensate wave function ψ↓ is λc=2 periodic, the
spin-up condensate wave function ψ↑ breaks this discrete
λc=2-translational symmetry. Note that the condensate den-
sitiesnτðxÞ ¼ jψτðxÞj2 for both components clearly have two
identical peakswithin one λc and are, therefore, λc=2 periodic
[43]. Therefore, the Z2 symmetry is broken by a spin wave,
rotating along the y axis as ψx;↑ð−λc=2Þ≡ ψmax

↓ þ jψmax
↑ j,

ψmin
↓ ð−λc=4Þ, ψx;↓ð0Þ≡ ψmax

↓ − jψmax
↑ j, and ψmin

↓ ðλc=4Þ,
rather than the density ordering. This is in sharp contrast
to the normal one-component self-ordered BEC, where the
condensate density is λc periodic in order to allow for in-
phase constructive scattering of the pump-laser photons into
the cavitymode. This is not the case in ourmodel as the cavity
field is coupled to the atomic spin polarization rather than
density [see Eq. (3)], and it will be discussed inmore detail in
the following.Note also that theUð1Þ symmetry representing
the freedom of the total phase is broken here by imposing
initial conditions in numerical calculations, resulting in
purely real condensate wave functions for both components.
In the self-ordered state, the relative condensate phase

ΔϕðxÞ varies in space. For α > 0, the phase of the cavity-
field amplitude is fixed over the entire space: ϕα ¼ 0. In
order to satisfy the constraint cosðkcxÞ cosϕα cosΔϕ < 0,

FIG. 2. Scaled steady-state cavity field amplitude as a function
of the dimensionless transverse pump strength. The Dicke
superradiance phase transition occurs around

ffiffiffiffi
N

p
ηc ≈ 2.6ωr,

where the cavity-field amplitude α (the black solid curve) attains
a nonzero value and the average relative condensate phase Δϕ
(the gray dashed curve) is locked at −π=2. The inset shows
spectra of the lowest four elementary excitations [Eq. (4)]
exhibiting mode softening around

ffiffiffiffi
N

p
ηc ≈ 2.15ωr, where the

emergence of imaginary eigenvalues (the gray dashed curves)
signals the superradiance phase transition. The parameters are set
to ðΔc; NU↓; NU↑; ~δ; κÞ ¼ ð−10;−2;−1; 0.5; 0Þωr, with the ini-
tial condition f↓ ¼ 0.8 and f↑ ¼ 0.2.

FIG. 3. The condensate wave functions ψτðxÞ over one wave-
length λc. The discrete λc=2 periodicity is broken by the spin-up
wave function. The relative condensate phase Δϕ varies peri-
odically in space with the average Δϕ ¼ −π=2 to minimize the
total energy (for the current figure, ϕα ¼ 0). The insets show
the coefficients jcτ;jj of the momentum-mode contributions to the
condensate wave functions for a pump strength

ffiffiffiffi
N

p
η ¼ 3.2ωr

and the other parameters as in Fig. 2.
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the relative condensate phase must therefore be Δϕ ¼ �π
(modulo 2π) for jxj ≤ λc=4 (e.g., for real wave functions one
condensate wave function is positive and the other negative)
and Δϕ ¼ 0 (modulo 2π) for λc=4 < jxj ≤ λc=2 (e.g., for
real wave functions both condensate wave functions are
either positive or negative); see Fig. 3. For α < 0 (i.e.,
ϕα ¼ π), this is opposite, namely, Δϕ ¼ 0 (modulo 2π) for
jxj ≤ λc=4 andΔϕ ¼ �π (modulo 2π) for λc=4< jxj≤λc=2.
This constraint on the relative condensate phase due to the
energy is also consistent with Eq. (3). Consider for instance
the α > 0 case, which implies that Δϕ ¼ �π for jxj ≤ λc=4
and Δϕ ¼ 0 for λc=4 < jxj ≤ λc=2. This in turn ensures
that the order parameter Θ is nonzero and negative: for
jxj ≤ λc=4 one has cosðkcxÞ > 0 and cosΔϕ < 0, while
cosðkcxÞ < 0 and cosΔϕ>0 for λc=4<jxj≤λc=2. Since
Δc−

P
τ

R
cos2ðkcxÞUτnτðxÞdx must be negative to avoid

heating, this yields a positive cavity-field amplitudeα > 0 in
a self-consistent way.
Around the threshold ηc where jαj=

ffiffiffiffi
N

p
≪ 1, the weakly

Raman-coupled two-component BEC is equivalent to the
two-dimensional classical ferromagneticXY spinmodel in a
uniaxial random magnetic field, where the relative con-
densate phase Δϕ plays the role of the spin angle and the
position-dependent Raman field with the zero spatial aver-
agemimics the randommagnetic field [38,42]. The classical
XY spin model in two dimensions has no net magnetization
in the absence of the magnetic field due to the Mermin-
Wagner-Hohenberg (MWH) no-go theorem [44,45], while a
weak uniaxial random magnetic field breaks the continuous
Uð1Þ symmetry associated with the freedom of spin angles
and hence violates the applicability conditions of the
MWH theorem, resulting in a spontaneous magnetization
perpendicular to the random field [40], even in small finite
temperatures [39,41]. The applicability of the MWH theo-
rem is also violated in our system by the explicitly broken
Uð1Þ symmetry via the Raman field, as well as cavity-
mediated long range interactions [42]. The corresponding
zero-average-Raman-field induced order in the two-
component BEC manifests in the averaged relative con-
densate phaseΔϕ ¼ ð1=λcÞ

R λc
0 ΔϕðxÞdx, which is locked at

either π=2 or −π=2 [38]. The averaged relative condensate
phaseΔϕ is shown in Fig. 2 as the gray dashed curve. It takes
thevalue−π=2 (which is favored overπ=2 in our calculations
duo to initial conditions) in the self-ordered state and an
arbitrary value (≈ − π) otherwise. Note that even for exceed-
ingly small Raman couplings ηjαj ≪ ωr in the onset of the
Dicke superradiance,Δϕ is still fixed at−π=2, indicating that
the superradiance phase transition in our model is indeed a
random-field induced ordering process similar to the two-
dimensional classical XY spin model in a uniaxial random
magnetic field. Nevertheless, the seed of the random Raman
field stems form quantum fluctuations and it is a dynamical
entity: the random Raman field triggers the self-ordering of
the BEC and this in turn amplifies the dynamical random
Raman field, resulting in a runaway process.

For ~δ > 0 and red-detuned cavity optical potentials
ℏUτjαj2cos2ðkcxÞ < 0 with jU↓j > jU↑j, the spin-down
condensate is energetically favored over the spin-up com-
ponent: jψ↓ðxÞj ≥ jψ↑ðxÞj. Because of the kinetic energy
cost, the spin-up condensate wave function ψ↑ðxÞ is
therefore favored to change its phase ϕ↑ðxÞ over space
at x ¼ ðlþ 1=2Þλc=2 (with l ∈ Z) to fulfill the phase
constraint discussed above; see Fig. 3. This implies that
the zero-momentum mode of the spin-up condensate must
be depleted. Because of the discrete λc-translation sym-
metry, one can decompose the condensate wave functions
into traveling plane waves as ψτðxÞ ¼

P
jcτ;je

ijkcx. The
coefficients cτ;j of the lowest three momentum modes
j ¼ 0, �1, �2 for both condensates are depicted in the
insets of Fig. 3. As expected, for the spin-up condensate the
zero-momentum mode j ¼ 0 is almost completely depleted
and the first excited momentum states j ¼ �1 are highly
populated, while for the spin-down condensate the zero-
momentum mode has the dominant population with a small
contribution from the second excited momentum states
j ¼ �2. Such a coupling of different spins to different
momentum states is reminiscent of a synthetic spin-orbit
interaction [46]. All higher momentum modes have a
negligible population for both condensates.
The equations of motion [Eqs. (1)] can be linearized for

small quantum fluctuations around the mean-field solutions
to yield spectrum ω of elementary excitations [15,47]. To
this end, we linearize Eqs. (1) around the trivial solution
α ¼ 0 and ψτ ¼

ffiffiffiffiffiffiffiffi
Nfτ

p
, with restricting atomic excitations

to solely e�ikcx owing to the Raman coupling (or cavity
pump) ∝ cosðkcxÞ, and obtain a sixth order characteristic
equation [42],

ðω2−ω2
rÞfðω2−ω2

rÞ½δ2cþðiω−κÞ2�þ2δcωrNη2g¼0; ð4Þ
with δc ≡ −Δc þ N

P
τfτUτ=2. The lowest four spectra

composed mainly of the atomic excitations are shown in the
inset of Fig. 2 as a function of the dimensionless pump
strength. Two of the excitation branches, corresponding
mainly to the atomic excitations of the spin-up component,
approach zero by increasing η and at the same time a pair of
imaginary eigenvalues (dashed curves) appear, signaling
dynamical instability in the trivial solution. This is the onset
of the superradiance phase transition. The zero frequency
ω ¼ 0 solution of the characteristic Eq. (4) yields the
threshold pump value,

ffiffiffiffi
N

p
ηc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2c þ κ2

2δc

s ffiffiffiffiffi
ωr

p
≈ 2.15ωr: ð5Þ

This is smaller than the threshold
ffiffiffiffi
N

p
ηc ≈ 2.6ωr obtained

from the mean-filed calculation. This can be attributed to
the fact that here the atomic excitations are restricted to the
lowest manifold e�ikcx, while this is not strictly true as can
be seen from the insets of Fig. 3.
Finally, let us briefly comment on two simplifying

assumptions used throughout the Letter. First, adding weak
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two-body interactions will somewhat flatten the condensate
wave functions without qualitative change of the results.
However, strong two-body interactions along with a Raman
coupling can give rise to a state with out-phase density
modulations of the two Bose condensates [48]. Second, a
nonzero cavity decay κ > 0 results in an imaginary αwith a
phase ϕα ∈ ½0; 2π�, rather than 0 or π as discussed above for
κ ¼ 0. Nonetheless, the averaged relative condensate phase
Δϕ would be still locked at �π=2 as before. A finite decay
can also induce cavity-mediated collisional relaxation.
However, these collisions are ineffective up to long time
scales proportional to the atom number N [49].
Conclusions.—We studied spatial spin and density self-

ordering of ultracold bosonic atomswith two internal ground
states coupled via a single cavity mode. Interestingly, spin
and density self-orderings are closely tied together due to
light-induced spin-orbit coupling, which emerges as a result
of an order-by-disorder process induced by a cavity-assisted
Raman field. Although our model constitutes the simplest
example of multicomponent itinerant atoms coupled to
dynamical cavity fields, it already highlights the rich physics
which can result from the strong photon-induced spin- and
position-dependent interactions between atoms in these
systems (a related idea has been recently put forward for
atoms coupled to photonic crystal waveguides [50]).
Therefore, our work opens a new avenue for exploring a
wealth of novel many-body phenomena, including the spin-
Peierls transition, topological insulators, interaction-driven
fractional topological and symmetry-broken phases, etc., in
tunable multicomponent cavity-QED environments.
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