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We present an in-depth many-body investigation of the so-called mesoscopic molecular ions that can
buildup when an ion is immersed into an atomic Bose-Einstein condensate in one dimension. To this end, we
employ the multilayer multiconfiguration time-dependent Hartree method for mixtures of ultracold bosonic
species for solving the underlying many-body Schrödinger equation. This enables us to unravel the actual
structure of such massive charged molecules from a microscopic perspective. Laying out their phase diagram
with respect to atomnumber and interatomic interaction strength, we determine themaximal number of atoms
bound to the ion and reveal spatial densities and molecular properties. Interestingly, we observe a strong
interaction-induced localization, especially for the ion, that we explain by the generation of a large effective
mass, similarly to ions in liquid Helium. Finally, we predict the dynamical response of the ion to small
perturbations. Our results provide clear evidence for the importance of quantum correlations, as we
demonstrate by benchmarking them with wave function ansatz classes employed in the literature.
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Introduction.—In early studies on ions in liquid 4He, a
small ionic mobility in the liquid was detected experimen-
tally [1]. To explain this observation, a high liquid density
around the ion was suggested [2]. The latter was sub-
sequently corroborated by the generation of a large effec-
tive mass for the ionic impurity [3], as many atoms are
attracted to the ion. In recent years, the combination of
degenerate quantum gases and trapped ions has opened
new perspectives [4], thereby allowing us to explore the
underlying mechanisms of such phenomena. Indeed, the
exquisite controllability of both quantum gases and trapped
ions enables in-depth investigations of fundamental proc-
esses ranging from ultracold chemical reactions [5–7],
charge transport [8], and spin decoherence [9] to sympa-
thetic cooling [7,10,11] and the strong-coupling regime of
polaron physics [12]. Importantly, the atom-ion interaction
supports the formation of weakly bound charged dimers
with binding radii of hundreds of nanometers or more [13],
which can be formed by three-body collisions [14,15] or
radiative processes [6]. These molecules are reminiscent of
Feshbach or halo molecules [16–18] as their neutral
counterparts are named and represent an example for
extraordinary molecules with a binding radius and a de
Broglie wavelength of the same order of magnitude. Even
more fascinating, they can consist of multiple bosonic
atoms and a single ion, such that they become mesoscopic
massive quantum objects [13], eventually even exhibiting a
shell structure [19]. When no population of the bound states
occurs, a single tightly confined ion is predicted to induce a
micron-sized density disturbance with hundreds of excess
atoms in an ultracold gas [3,20], which becomes a clear
density hole in the Tonks-Giradeau limit [21]. However,
such a density hole increasingly closes if bound states
become populated [22].

In this work, we explore the quantum state of such
mesoscopic molecular ions in one spatial dimension (1D)
based on a microscopic theory (see Fig. 1). Thereby, we are
able to derive a complete zero-temperature phase diagram
for the compound system and show how strongly the
critical cluster size [13] is affected when particle correla-
tions are taken into account. We confirm the hypothesis of
interatomic interaction-induced excitations stabilizing the
molecular cluster [19] and observe as well as explain the
self-localization behavior of the ion, which becomes
possible by incorporating the ionic motional degree of
freedom, not taken into account in earlier studies [20–25].
As a result, we connect the atomic density profiles, in
particular, the predicted density hole [20–22], with the
spatial extent of the ionic wave function and predict the
dynamical response of the ion to a small perturbation. All
this is attained by exploiting the knowledge of the numeri-
cally computed many-body correlated quantum state of the
compound system and allows us to benchmark commonly
used wave function ansatz classes.
Setup.—We study a single ion of mass m and position zI

immersed into a cloud of N bosonic ultracold atoms of
mass m located at zi both confined in a harmonic trap of
frequency ω. Let us remark that the choice of equal trap
frequencies is for reasons of simplicity and our results (see
below) do generalize to the case of unequal trapping
frequencies. The atoms interact via a contact-interaction
potential of strength g, while the atom-ion interaction at
large distance is given by VAIðzi − zIÞ ∝ − 1

2
αe2ðzi − zIÞ−4

[26] with the atomic polarizability α inducing a charac-
teristic length R�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αe2m=ð2ℏ2Þ

p
and energy E� ¼

ℏ2=ðmR�2Þ scale. Moreover, we take the two most weakly
bound states of the atom-ion interaction into account
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(see Fig. 1), which are eigenstates of the relative
Hamiltonian −ðℏ2=mÞ∂2

r þ VAIðrÞ with energy ϵi. In order
to reveal the physics originating from the atom-ion inter-
action, we set the trap length l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωÞp ¼ R�.
Phase diagram.—Depending on N and g, two distinct

phases for the ground state occur (see Fig. 2), which can be
separated by looking at the sign of the chemical potential,

μ ¼ EðN þ 1; gÞ − EðN; gÞ; ð1Þ

with the total energy EðN; gÞ. For μ < 0, the presence of the
bound states makes the binding of all bosonic atoms
possible such that a single mesoscopic charged molecule
is formed. The near linear decrease of EðNÞ (inset) shows
that the atoms are “inserted one by one” into the bound

state, which is only possible due to their bosonic nature. In
contrast, for μ > 0, the total energy cannot be reduced
anymore by adding another atom. This clearly indicates
that not all atoms can be bound, since the ion becomes
increasingly screened, resulting in an unbound, yet trapped,
atomic fraction. In between these two regimes, the dis-
sociation of the molecule occurs at μ ¼ 0 defining the
maximal number of atoms Nc that can be bound to the ion
for a fixed g. Hence, we find a transition from an all-bound
many-body state to a molecule immersed in an unbound
background gas. One can estimate the threshold region by
equating estimates for the energy of the mesoscopic
molecule and the state where one atom is detached from
the molecule to be gc ≈ ðω − ϵ1Þ=ðNc − 1Þ (dashed line).
The question that arises now is as follows: How does one

capture the essential nature of such a many-body quantum
state, particularly from microscopic considerations? A
natural starting point for the theoretical description of
the wave function jΨi is obtained by variationally optimiz-
ing a product ansatz,

ΨMFðzI; z1;…; zNÞ ¼ φðzIÞ
YN

i¼1

χðziÞ; or ð2Þ

ΨGðZI; Z1;…; ZNÞ ¼ φðZIÞ
YN

i¼1

χðZiÞ: ð3Þ

The first ansatz ΨMF corresponds to a product of the atomic
and the ionic part of the wave function together with a
Gross-Pitaevskii ansatz for the atomic part. Hence, we refer
to this ansatz as mean field (MF). The second ansatz ΨG,
inspired by Gross [3], is a product in the ion-frame (IF)
coordinates ZI ¼ zI and Zi ¼ zi − zI . In order to go even
beyond both ansatz wave functions, we employ the multi-
layer multiconfiguration time-dependent Hartree method
for bosons (ML-MCTDHB) [31,32] (see Supplemental
Material [26]), which allows us to numerically compute
the ground state of the hybrid system via imaginary time
propagation, i.e., relaxation. We observe that the MF can
reproduce a minimum in the total energy (see inset of
Fig. 2); nevertheless, it predicts a substantially too large
energy. The Gross ansatz already lowers the total energy,
and hence is closer to the true ground state due to the
underlying variational principle. The ML-MCTDHB
results, however, further approach the true many-body
ground state such that we can use them to benchmark
the MF and the Gross approach. In addition to the lowering
of EðNÞ, it also predicts the dissociation at larger N (cf.,
circle and crosses).
Molecular structure.—In order to unravel the structure of

such a many-body state, we begin with the atomic and ionic
density profiles ρIðAÞðzÞ ¼ hΨ̂†

IðAÞðzÞΨ̂IðAÞðzÞi (see Fig. 3),

where Ψ̂IðAÞ are the ion (atom) field operators. We observe
that for small N both density distributions are of similar

FIG. 1. Setup and atom-ion interaction. (Left) Atoms (blue) and
ions (red) in a quasi one-dimensional harmonic trap. (Right) Bare
and regularized [26] atom-ion interaction potential (solid and
dashed-dotted black lines) together with the two most weakly
bound states and their energies ϵi.

FIG. 2. Phase diagram. Chemical potential μ from the Gross
ansatz as a function of N and g. Black circle (crosses) mark μ ¼ 0
from ML-MCTDHB (Gross). The black dashed line presents the
estimation gc ≈ ðω − ϵ1Þ=ðNc − 1Þ. (Inset) Total energy EðNÞ as
a function of N for g ¼ 3E�R�.
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shape and spatial extension though with different maximal
values. For large N, the ion becomes significantly local-
ized, while the atoms reveal two peaks in the density
(g ¼ 0) and exhibit the formation of broad shoulders
(g > 0). We observe that the qualitative behavior of the
latter can be captured by a Thomas-Fermi (TF) profile with
NTF ¼ N − Nc atoms (cyan line). However, we emphasize
that the atoms are strongly correlated and far away from the
validity regime of the TF approximation. The fact that the
atoms are bound or unbound is, however, not obvious from
the density profiles and becomes only explicit in the atom-
ion correlation function

g2ðzÞ ¼
hΨ̂†

I ðzÞΨ̂†
Að−zÞΨ̂Að−zÞΨ̂IðzÞi
NρIðzÞρAð−zÞ

ð4Þ

with z ¼ zA − zI shown in Fig. 3(d). Here, we can clearly
see that it is most likely to find an atom at the binding
distance d (vertical dashed line) from the ion, while larger
distances are strongly suppressed for N < Nc (Nc ¼ 12
for g ¼ 3E�R�). Note that the MF ansatz results in
g2ðzA − zIÞ ¼ 1; i.e., no binding is possible. The atomic
density profile can now be explained by sampling the g2ðzÞ
profile with well-defined binding distance over the ionic
density distribution (see sketch in Fig. 3). While for (i) a
spatially spread ion the molecular structure is hidden by the
sampling, (ii) a localized ion reveals details of the binding
by the two density peaks representing the strong bunching
at distance d. In this way, we rediscover the onset of the
central density hole predicted for a static ion [21,22];
however, here it is induced by the atom-ion interaction
instead of originating from an external strong confinement.
For N approaching Nc, one observes that the atom-ion
correlation function broadens to larger relative distances,

which reduces the bunching at d. This corresponds to a
spatial increase of the bound-state width. Beyond the
dissociation point Nc, the strong suppression of larger
atom-ion distances is lifted and the occurrence of the
unbound fraction becomes prominent [see second maxi-
mum in Fig. 3(d)].
While the Gross ansatz is able to reproduce this behavior

of g2ðzÞ qualitatively, it does not allow for population of an
odd state due to the parity symmetry of the ground state. In
Fig. 3, the population of the two bound states fj ¼ hâ†j âji
is shown with âj (â†j ) being their annihilation (creation)
operators. We find a significant population of the second
bound state, in particular, for even N. This excitation of
atoms to the more weakly bound state allows us to reduce
the interatomic repulsive energy and hence stabilizes
the many-body bound state. This explains the observed
increase of Nc obtained from the correlated ML-MCTDHB
results and can be viewed as the 1D analog of shell structure
formation.
Self-localization.—As previously seen, the increase

of N localizes the ion. For a more quantitative analysis,
we use the atomic (σ2A ¼ hð1=NÞPN

i¼1 z
2
i i) and the ionic

(σ2I ¼ hz2I i) variance, shown in Fig. 4 in units of the
noninteracting variance σ0 ¼ l=

ffiffiffi
2

p
. Already for N < Nc,

we observe that the ion as well as the atoms localize on a
length scale smaller than the trap length. Since this is solely

FIG. 4. Self-localization. Variance of the atomic (blue) and the
ionic (red) variance normalized by the noninteracting variance σ0.
Ionic variance from the Gross (dashed) and the mean-field
(dashed dotted) ansatz for g ¼ 0 are shown, too. The dark (light)
thick lines represent σI (σA) solely including the increase of M
[26]. The dark (light) gray area represents the spatial extent of the
bound states (σ0).

(a) (b)

(d) (e)

(c)

FIG. 3. Molecular structure. [(a)–(c)] Atomic (shaded) and
ionic (solid line) density profiles. In (c) also a Thomas-Fermi
profile with N − Nc particles is shown (dashed line). (d) Atom-
ion correlation function g2ðzÞ for g ¼ 3R�E�. (e) Population of
the bound states fj=N. (i) Delocalized versus (ii) localized ion
and its impact on the atomic density.
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induced by the atom-ion interaction, we call it self-
localization. For g ¼ 0, both variances decrease monoton-
ically with increasing N. Since in this case the state is an
(Nþ1)-body cluster,we can understand this self-localization
solely by the increase of the total mass M ¼ ðN þ 1Þm
localizing the center of mass wave function of the complete
atom-ion system (thick lines; see Supplemental Material
[26]). In this way, the atomic variance approaches the width
of the bound state (dark gray area) because the static ion
assumption becomes increasingly valid. Be aware that while
theMF (dasheddotted line) strongly underestimates the ionic
variance, the Gross ansatz strongly overestimates it (dashed
line). For g > 0, the variance σA reveals a minimum and
increases already for N < Nc. This goes hand in hand with
the spatial widening of g2 [solid line in Fig. 3(d)], which we
interpret as a broadening of the bound state. We emphasize
that only when the effective bound state variance becomes
comparable to the trap length the impact of the confinement
on the molecular ion goes beyond the localization of the
center of mass. In this case, one might think of a “molecule
under pressure” [33,34]. Beyond Nc, the ionic self-
localization is reduced while the emergence of the shoulders
in the atomic density gives rise to a rapid increase of σA. Here
it becomes evident that the situation of equal trapping
frequencies for atoms and ion represents no restriction to
the generality of our results. Since the atoms and, in
particular, the ion localize on distances smaller than their
trapping length, the confining potentials only determine the
center of mass variance. However, the atomic trap becomes
indeed important forN > Nc, impacting the dissociation and
defining the spatial extent of the unbound fraction. In
contrast, the ion trap has actually vanishing impact such
that it could in most cases even be switched off.
Low energy excitations.—In order to learn about the

dynamical response of the strongly correlated ion within
the bosonic ensemble to, e.g., a quench of the ionic trap
frequency, we introduce an effective single particle of mass
m� confined in a harmonic trap of frequency ω� [35].
Motivated by an ion density profile that is very well
approximated by a Gaussian [26] and minor correlations
between the ionic and the atomic IF coordinates, we use the
particle associated to the ionic variable ZI in the IF as an
effective particle. By construction, it has the equivalent
density profile as the ion itself such that spatial measure-
ments can be associated to both of them. From the Gross
ansatz, one expects a free particle of mass m in a trap
ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

p
. In order to obtain the effective frequency ω�,

one could excite a breathing oscillation [36]. Here,
however, we compute ω� from the spatial width l� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðm�ω�Þp ð¼ ffiffiffi

2
p

σIÞ and the effective force exerted on
the effective particle. Employing the knowledge of the full
many-body wave function, the effective force F�

I ðZIÞ is
given by the partial trace of the force operator FI ¼
−½∂ZI

; H� with H being the total system Hamiltonian in
the IF [26].

The resulting m� and ω� are shown in Fig. 5. In case all
atoms are bound (N < Nc), we observe that the effective
ion accumulates a large mass, nearly the total mass M,
increasing linear in N, while ω� is varying very little and is
given approximatively by the trap frequency. Hence, the
localization can be understood by the generation of a huge
effective mass. Approaching Nc for g=E�R� ¼ 3, m�
becomes sublinear whereas for N > Nc it rapidly increases
even to the total mass M. At the same time, the effective
frequency strongly decreases revealing a slow response.
Note that we do not give ω� and m� for g ¼ 3 beyond
N ¼ 15 because here the effective single particle picture
breaks down [26]. We remark that small effective trapping
frequencies and large effective masses are reminiscent of
the behavior found for the ionic polaron in the strong-
coupling regime [12].
Discussion and experimental realization.—The attain-

ment of the ultracold s-wave collision regime in atom-ion
systems is under intense investigation [37–42]. The hybrid
system can be created either by combination of atom and
ion traps [38] or by fast ionization of a few atoms [37].
For instance, assuming a 87Rbþ ion in a 87Rb atomic cloud
(R� ¼ 260 nm and E�=h ¼ 1.6 kHz), our setup corre-
sponds to a trap frequency of ω ≈ 2π × 1.6 kHz. With a
transversal trapping frequency of ω⊥ ≈ 2π × 50 kHz, we
obtain g ≈ 1E�R� [43]. The formation of molecular ions,
however, now relies on the occurrence of three-body
collisions, the dominant reaction channel already at mod-
erate densities [15], or can be induced by either photo-
association [6] or a Raman-type scheme [13]. In this work,
we have assumed that only the two most weakly bound
states are of relevance for this reaction. This can be justified
by the strong suppression of direct atom capture into more
deeply bound states [13], even though these processes
dictate the lifetime of the molecular ion. Once the molecule
is formed, it can be probed by measuring the atomic excess
density near the ion [20,21] or by waveguide expansion
[22]. Moreover, the binding can be identified via the
effective ion mass by measuring the ionic variance [44]
in the ground state and during breathing dynamics.

(a) (b)

FIG. 5. Effective ion behavior. (a) Effective mass m�=m and
(b) effective trapping frequency ω�=ω. Note that the Gross ansatz
gives ωG ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

p
and mG ¼ m.
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Conclusions.—We have derived and characterized the
many-body bound state of N atoms and a single ion both
confined in a harmonic trap. The dissociation threshold Nc
has been identified, for which a transition from an all-
bound molecular ion to a molecule immersed into a
background gas takes place. We have seen that even though
the spatial extent of the particles is larger than the binding
distance, one can identify the binding. The latter induces a
substantial self-localization behavior for atoms and ion.
Beyond that, we showed that the ion behaves like an
effective particle of nearly the total mass in the bare ion
trap. In addition, we were able to benchmark simplistic
wave function classes via the ML-MCTDHB method,
showing that correlations counteract the localization and
stabilize the molecular cluster. Our results can be viewed as
the basis for future intriguing studies concerning meso-
scopic many-body bound states. Promising directions
concern the formation time scales, stability, and internal
molecular excitations. Moreover, the insights gained into
the structure of the many-body wave function can stimulate
the design of a unifying, simple and predictive, theoretical
model that captures the essential physics over the complete
parameter regime even up to high atom numbers.
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