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We put forward a new ab initio approach that seamlessly bridges the structure, clustering, and reactions
aspects of the nuclear quantum many-body problem. The configuration interaction technique combined
with the resonating group method based on a harmonic oscillator basis allows us to treat the reaction
and multiclustering dynamics in a translationally invariant way and preserve the Pauli principle. Our
presentation includes studies of 8;10Be and an exploration of 3α clustering in 12C.
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The unified description of many-body nuclear structure
and reactions from fundamental, ab initio, principles is a
central issue in modern nuclear physics, astrophysics, and
mesoscopic quantum physics, in general. Challenging
questions about the role of intrinsic degrees of freedom
in nuclear reactions [1,2], the emergence of rotational
behavior in the continuum [3,4], the interplay between
structure, reactions, and the single-particle and collective
motion in nuclear states [5,6], near-threshold clustering
effects [7–10], large-amplitude collective motion and shape
coexistence [11], and the phenomenon of superradiance,
where structural clustering is enhanced or reduced due to
reaction dynamics [12], still remain.
The recent decades have seen outstanding progress in

methods related to both nuclear structure [13–17] and
nuclear reactions [18–23]; however, a unified treatment
of the two remains challenging. For two-body processes,
there is a wealth of strategies that solve the structure-
reaction problems: matching solutions [21,24], the
R-matrix method [25], Hilbert space projection techniques
such as the shell model embedded in the continuum
(SMEC) [26] or the continuum shell model (CSM) [19],
the Berggren complex-plane formulation [27], Lüscher’s
finite-volume method [20,28], or the HORSE (J-matrix)
formalism [29,30]. However, the coupling between intrin-
sic structure and the continuum of reaction states remains a
particularly difficult question when it comes to multiple
final-state fragments, decay fragments with complex inter-
nal structures [2], long-range interactions [31], competing
direct and sequential decay modes [32,33], or many open
channels that are equally significant and provide a struc-
tural feedback from the continuum [12]. These problems
are not unique to nuclear physics, as they are encountered
in many branches of physics related to open mesoscopic
quantum systems: quantum information [34], electronic
transport [35], quantum optics [36], biological light-
harvesting complexes [37], and plasmonic antenna arrays
[38], to name a few.
In this work, we put forward a novel strategy that bridges

the ab initio configuration interaction structure calculations

with reactions through a resonating group method (RGM)
[39]. The RGM provides a general formal strategy for
coupling asymptotic reaction states and cluster degrees of
freedom with the intrinsic structure needed to apply methods
such as R matrix, CSM, or SMEC [19,22,40,41]. In order to
overcome the previously mentioned impediments and lim-
itations, we propose to build RGM multicluster channels
using a harmonic oscillator (HO) basis expansion of the
relative motion between fragments. These intrinsic channel
states coupled with asymptotic solutions provide the needed
structure-reaction interface.
We operate here with the multinucleon shell-model-type

wave functions Ψ, which are linear combinations of Slater
determinants of the single-particle HO states. We use the
formalism of second quantization, which preserves the
antisymmetry and allows us to view the many-body state
as a many-body creation operator that creates this state
from the vacuum; constructions of the type jΨð1ÞΨð2Þi≡
Ψ̂†ð2ÞΨ̂†ð1Þj0i are automatically antisymmetrized [42].
The HO basis adopted for this work allows for a formal

separation of the center-of-mass (c.m.) degrees of freedom,
leading to a translationally invariant approach. In both
traditional shell model and no-core shell model (NCSM)
approaches, where basis states are restricted by the maxi-
mum number of oscillator excitation quanta Nmax, the HO
Hamiltonian for the c.m. can be used to factorize the
c.m. degree of freedom in the many-body wave function
[43], leading to physical states of interest being in the form

Ψ ¼ ϕ000ðRÞΨ0: ð1Þ

Here ϕnlmðRÞ denotes the HO wave function with n
nodes, angular momentum l, and magnetic projection m,
while Ψ0 is a translationally invariant function of relative
coordinates only. For example, theNmax ¼ 0 structure of an
α particle amounts to representing the wave function with a
single Slater determinant containing two protons and two
neutrons in the lowest 0s HO shell, sometimes called an s4

structure. We denote this by α½0�, where the Nmax value
appears in square brackets; we use this notation for the
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remainder of the text. The c.m. motion of this α½0� structure
is described by the lowest oscillator state ϕ000ðRÞ. Given
the compact nature of the α particle, the translationally
invariant part of the simple α½0� wave function represents
over 90% of the physical α, assuming a proper selection
of the HO frequency around ℏΩ ≈ 25–27 MeV. The α½0�
approximation is commonly used in α clustering studies
[42,44–46], as it allows for an algebraic treatment that
utilizes the SU(3) symmetry of the isotropic HO.
In order to construct reaction channels in which clusters

are moving relative to each other and the overall transla-
tional invariance is respected, we build “boosted” states

Ψnlm ¼ ϕnlmðRÞΨ0; ð2Þ

where the c.m. can be in any desired oscillator state, while
the intrinsic part Ψ0 remains unchanged. We do this
numerically without any approximations or truncations
using the c.m. creation and annihilation operators, B†

and B correspondingly. These vector operators are parts
of the usual isoscalar dipole operator. Starting from Ψ≡
Ψ000 in Eq. (1), the number of nodes n can be increased
with a scalar product B† · B†, namely, jΨnþ1lmi ∝ ðB†·
B†ÞjΨnlmi, while the c.m. angular momentum vector l is
proportional to a vector product B† ×B; and in practice a
series of aligned l ¼ m states is obtained using the raising
component B†

m¼þ1. The total number of oscillator excita-
tion quanta in (2) is shared between the c.m. and intrinsic
degrees of freedom N¼Nc:m:þN0, where Nc:m: ¼ 2nþ l;
see also Ref. [47]. Many previous works [42,45,48,49]
employed the α½0� approximation for the α particle, in
which case the boosted states in Eq. (2) can be expressed
analytically in the SU(3) HO basis.
Consider a reaction process A1 þ A2 ¼ A, where A1 and

A2 are two fragments forming the parent system A. We
construct, and correspondingly define, each reaction chan-
nel basis state jΦnlJi as a linear combination of boosted,
fully antisymmetrized states jΨn1l1m1

ð1ÞΨn2l2m2
ð2Þi cou-

pling their c.m. motions so that the two clusters A1 and A2

are in a relative HO state ϕnlmðρÞ, where ρ ¼ R1 −R2,
and the overall c.m. variable of the state is in the Nc:m: ¼ 0
HO state that coincides with the c.m. state of the parent A.
This coupling can be done using oscillator (Talmi-
Moshinsky) brackets. The orbital angular momenta of
c.m. motion are coupled as l1 þ l2 ¼ l, the total nuclear
spins of each fragment A1;2 are coupled as J1 þ J2 ¼ S,
and finally the combined intrinsic nuclear spin S and the
angular momentum of relative motion l give the total
angular momentum of the channel lþ S ¼ J. We can write
the basis channel state in abbreviated form as

jΦnlJi ¼ jfϕ000ðRÞϕnlmðρÞfΨ0ð1ÞΨ0ð2ÞgSgJi; ð3Þ

and the commutation rules of second quantization used in
the construction process ensure full antisymmetrization.

The wave functions jΦnlJi provide a convenient basis
set for expanding the true cluster relative motion in terms
of harmonic oscillator functions ϕnlmðρÞ. The overlaps
hΨjΦnlJi are translationally invariant by construction, and
their total norm SF ¼ P

njhΨjΦnlJij2, known as the tradi-
tional spectroscopic factor, provides the simplest spectro-
scopic clustering characteristic of states (1) of parent A,
clustering into A1 þ A2 fragments.
In Table I, we show select examples of spectroscopic

overlaps for various systems and channels. The algebraic
SU(3) examples and closed-shell limits confirm known
analytic results [44,50,51]. The basis channels ΦnlJ are
not normalized (see last column of Table I) nor generally
orthogonal, which makes it hard to associate amplitudes
in Table I and the corresponding traditional spectro-
scopic factors with observables. Thus, the renormalized
spectroscopic factors [52] obtained as a result of the
orthonormalization of the basis channels are commonly
discussed [6,42].
There is no substantial change in our approach for

channels with more than two fragments in the final state;
Eq. (3) can be generalized using the same boosting
procedure where c.m. motion is controlled via Jacobi
coordinates or by using a generalization of the oscillator
brackets obtained numerically using diagonalization, sim-
ilar to the method in Ref. [53]. Multi-α channel examples
are included in Table I.
Next we consider a full dynamical problem within the

RGM framework. Here, the actual channel wave function
for a given set of asymptotic quantum numbers (which in
the following we abbreviate with a single label l) is given
as an expansion of basis channel states (3), enumerated
with n:

TABLE I. Absolute values of spectroscopic amplitudes and
channel norms for various types of parent states and basis
channels. All channels here have l ¼ 0, and the number of
quanta in relative motion of the two fragments is denoted by
Nc ¼ 2nþ l. For each nucleus, square brackets indicate the
structure used for the corresponding fragment which could
include spectroscopic notation, a pair of SU(3) quantum num-
bers, or Nmax as a single integer.

Parent Channel Nc jhΨjΦnlJij hΦnlJjΦnlJi
16O½0� 12C½ð0; 4Þ� þ α½0� 4

ffiffiffiffiffiffiffiffiffiffi
8=27

p
8=27

16O½0� 12C½p8
3=2� þ α½0� 4 0.135 0.018

16O½0� 12C½p8
3=2� þ α½4� 4 0.130 0.017

8Be½ð4; 0Þ� α½0� þ α½0� 4
ffiffiffiffiffiffiffiffi
3=2

p
3=2

8Be½0� α½0� þ α½0� 4 1.160 3=2
8Be½4� α½0� þ α½0� 4 0.984 3=2
8Be½4� α½0� þ α½0� 6 0.644 15=8
8Be½4� α½2� þ α½2� 4 0.981 1.492
12C½p8

3=2� α½0� þ α½0� þ α½0� 8 1=4 81=80
16O½0� ðα½0�Þ4 12

ffiffiffiffiffiffiffiffiffiffi
3=10

p
3=10
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F lðρÞ ¼
X

n

χnΦnl: ð4Þ

The form of this expansion is determined variationally
using the generalized eigenvalue problem

X

n

HðlÞ
nn0χn0 ¼ E

X

n

N ðlÞ
nn0χn0 ; ð5Þ

where

HðlÞ
nn0 ¼ hΦnljHjΦn0li and N ðlÞ

nn0 ¼ hΦnljΦn0li: ð6Þ

The channel normalization requires
P

nN
ðlÞ
nn0χ

�
nχn0 ¼ 1.

Now, the Hamiltonian is used to establish the reaction
channels dynamically. For two-body reactions, the pro-
cedure amounts to an expansion of the relative motion in a
HO basis, where the expansion index n is the number of
nodes in the relative motion. For large n, which are
associated with large relative separation of the two frag-
ments, the basis channels Φnl become orthogonal and the
matrix elements of the relative motion Hamiltonian are
given by Coulomb and kinetic energy matrix elements that
are known analytically.
In general, these intermediate-range RGM solutions

should be properly matched or combined in the Hilbert
space with the asymptotic ones through other techniques
such as R matrix or CSM. For long-lived resonances, the
continuum coupling is weak and does not modify the
structure; in this limit, the perturbation theory is applicable;
therefore, Fermi’s golden rule and the spectroscopic ampli-
tudes characterize decay and reaction observables.
Let us demonstrate the approach using a well-known

8Be → αþ α example which, due to numerous previous
theoretical studies [7,23,54,55], emerged as a benchmark
for clustering methods. In addition, 8Be is a stark example
of collectivity and rotations in the continuum [3,56] where,
as being well established experimentally in many light
nuclei [6,8,9,57], strongly clustered rotational bands sur-
vive the complexity of many-body dynamics. In the limit
where a channel is constructed from two α particles with
structure limited to α½0�, the norm kernel is diagonal and
nonzero only when 2nþ l ≥ 4 and l is even; it can be
computed analytically [58]:

N ðlÞ
nn0 ¼ δnn02ð1 − 22−2n−lÞ: ð7Þ

An example with four quanta in relative motion
(Nc ¼ 2nþ l) is included in Table I. Result (7) highlights
the bosonic nature of the α particle: Only even l are
allowed and with a growing number of quanta in the

relative motion, N ðlÞ
nn ≈ 2.

In Fig. 1, we show the spectrum of the RGM
Hamiltonian (5) computed using the SRG softened N3LO
nucleon-nucleon interaction with a softening parameter

λ ¼ 1.5 fm−1 [59,60]. The results from the corresponding
NCSM calculation 8Be½Nmax ¼ 4� and the experimental
spectrum are included for comparison. The radial part of
the RGM wave function for different values of l is shown
in the inset. The channel states are limited to a maximum
number of relative quanta Nc ≤ 12. Tests with different
Hamiltonians, with different values of ℏΩ, and with various
truncations by oscillator quanta in the relative α − α motion
ðNcÞ, as well as using more complex NCSM configurations
for the α, indicate that this is a generic result. Additional
details and comparisons can be inferred from the data in
Table II.
In comparison to the experiment, the relative energies

and the rotational band states 0þ, 2þ, and 4þ are well
reproduced. The full no-core calculation, which in general
includes cluster channels, naturally leads to a lower
absolute binding energy, but our results suggest that these
states in 8Be are indeed nearly indistinct from αþ α RGM
solutions. This structural information is highlighted by the
large overlaps between parent states Ψ and RGM channels
F l shown in Table II.
For the example in Fig. 1, the validity of expansion (4)

with 2nþ l ¼ Nc ≤ 12 is expected up to about ρ ∼ 4 fm.
Beyond that, the norm kernel transforms into that of

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened
N3LO interaction (λ ¼ 1.5 fm−1) and ℏΩ ¼ 25 MeV for a 2α
system. Zero on the energy scale is set by the αþ α breakup
threshold of the corresponding model. Levels are marked by spin
and parity and by an absolute binding energy in units of MeV.
The α binding energies for the α½0� and NCSM ðα½4�Þ calculations
are −26.08 and −28.56 MeV, respectively. The inset shows the
relative wave function of the two α clusters.
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independent particles, and, assuming that the resonance is
narrow, we should match this to a wave function of two α
particles with a relative motion described by an outgoing
Coulomb wave. Our estimates for the width based on the
standard techniques (see Refs. [33,61], and references
therein) give 8.7 eV, 1.3 MeV, and 2.1 MeV for a channel
radius ρc ¼ 3.6 fm; the corresponding experimental widths
are 5.6 eV, 1.5 MeV, and 3.5 MeV for the 0þ, 2þ, and 4þ
resonances, respectively. This value for ρc is selected to be
in the middle of the area where our results are not sensitive
to changes in the channel radius.
We utilize the same approach with the same parameters

to examine the ground state cluster rotational band of 10Be,
also shown in Table II. The remarkable survival of rotations
in the continuum displayed in this nucleus through cluster-
ing bands that persist despite the presence of weakly bound
valence neutrons have been highlighted by recent experi-
ments [57,62]. Our results reaffirm this phenomenon and
open a path for its further theoretical investigation.
Finally, we discuss the 3α nature of bound and decaying

states in 12C. Various cluster geometries have been pro-
posed for 12C states [13,63,64], pointing to the major role α
clustering plays in this nucleus and correspondingly for the
formation of elements in nature. Here for the first excited
0þ (Hoyle) state the fraction of the direct decay, currently
believed to be less than 10% of the total, and its competi-
tion with the sequential, via 8Be, one is of particular
interest [65,66].
We employ the RGM procedure with three identical α

particles, each in an α½0� configuration, with up to 12
quanta in relative motion and the same Hamiltonian as
before. The results in Table II show the spectroscopic
amplitudes for the ground state and for the first excited, 0þ2
state, which could be a prototype of the Hoyle state.
The unconstrained RGM wave function defines initial

amplitudes for all types of asymptotic three-α solutions.
The amplitude for the sequential decay process, proceeding
via the ground state of 8Be, can be evaluated by

constructing the constrained 8Beþ α channel separately
and projecting it out. For the 0þ2 state, the magnitude of the
sequential decay amplitude is 89% of the total, with the
remaining 11% corresponding to all other processes that do
not proceed via the 8Be ground state. These amplitudes,
their interference, final state interactions, and phase space
lead to observables; see Ref. [31] and references therein.
In summary, in this work we put forward a new

approach that targets clustering reaction dynamics in light
nuclei from ab initio principles. Our approach is based on
the configuration interaction technique combined with the
resonating group method, involves antisymmetrization over
all nucleons, is translationally invariant, is applicable to
various types of clustering, and under appropriate approx-
imations reduces to well-established previously used tech-
niques. Studies of 8Be show the consistency of our results
with other methods and good agreement with experimental
data. We demonstrate the emergence and stability of the in-
continuum rotational bands in beryllium isotopes. Starting
from first principles, we conduct a triple-α clustering study
of 12C which is unbiased towards direct or sequential decay
processes. As discussed throughout the text, we hope that
our work will set an important milestone in the physics
connecting structure and reactions. Further ongoing com-
parisons with experimental data, advanced numerical
studies, studies of different Hamiltonians, and different
approximations should provide an invaluable insight on the
physics of clustering phenomena in atomic nuclei and
quantum many-body systems, in general.
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