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The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice
QCD calculation of the nn → pp transition and effective field theory methods. At the unphysical quark
masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are
found to be of similar magnitude to the nuclear modification of the single axial current, which
phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This
finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate
this previously neglected contribution if they are to provide reliable guidance for next-generation
neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities
of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
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Double-β (ββ) decays of nuclei are of significant
phenomenological interest; they probe fundamental sym-
metries of nature and admit both tests of the standard model
(SM) and investigations of physics beyond it [1].
Consequently, these decays are the subject of intense
experimental study, and next-generation ββ-decay experi-
ments are currently being planned [2–4]. At present, both
the robust prediction of the efficacy of different detector
materials, necessary for optimal design sensitivity, and the
robust interpretation of the highly sought-after neutrinoless
ββ-decay (0νββ) mode are impeded by the lack of knowl-
edge of second-order weak-interaction nuclear matrix
elements. These quantities bear uncertainties from nuclear
modeling that are both significant and difficult to quantify
[5]. Controlling the nuclear uncertainties in ββ-decay
matrix elements by connecting the nuclear many-body
methods to the underlying parameters of the SM is a
critical task for nuclear theory.
In this Letter, lattice QCD and pionless effective field

theory [EFTðπ Þ)] are used to investigate the strong-inter-
action uncertainties in the second-order weak transition of
the two-nucleon system in the SM by determining the
threshold transition matrix element for nn → pp. This
matrix element receives long-distance contributions from

the deuteron intermediate state whose size is governed by
the squared magnitude of the hppj ~Jþμ jdi matrix element
of the axial current that has been recently calculated using
lattice quantum chromodynamics (LQCD) [6]. In that
work, the two-body contribution to the matrix element
(i.e., that beyond the coupling of the axial current to a
single nucleon) was constrained, quantifying the effective
modification (quenching) of the axial charge of the nucleon
from two-body effects. Here, it is highlighted that the nn →
pp matrix element receives additional short-distance con-
tributions beyond those in jhppj ~Jþμ jdij2 arising from the
two axial currents being separated by r < Λ−1 ∼m−1

π

[where Λ is the cutoff scale of EFTðπ Þ], referred to herein
as the isotensor axial polarizability. Using EFTðπ Þ to
analyze both the second-order weak transition calculated
here for the first time and the first-order hppj ~Jþμ jdi
transition [6], the short- and long-distance contributions
to the nn → pp matrix element are separately determined.
Interestingly, the short-distance contribution to the total
matrix element from the axial polarizability is found to be
of comparable size (within the uncertainties of the present
calculation) to the two-nucleon current contribution to
jhppj ~Jþμ jdij2. Described in phenomenological terms, the
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polarizability thus appears to be as important as the
effective quenching of the axial charge in the two-nucleon
system.
The numerical calculations in this work are performed at

unphysical values of the quark masses and for a disallowed
decay. While there is no immediate phenomenological
impact of the numerical values of the matrix elements that
are extracted, the observed behavior does provide an
important lesson for many-body calculations. In typical
calculations of two-neutrino (2νββ) decay, the nuclear
matrix elements are calculated using two insertions of
the axial current in a truncated model space, with a
quenched value of gA tuned to reproduce experiment. If
the findings presented here persist at the physical values of
the quark masses, they would imply that a potentially
significant contribution has been ignored in standard 2νββ
calculations, resulting in a source of uncertainty in the
nuclear matrix elements that remains to be quantified.
Importantly, this uncertainty can only be constrained using
ββ-decay measurements or numerical calculations. In 0νββ
decays, the situation becomes even less certain, in part due
to dependence on possible scenarios of physics beyond the
SM. With a light Majorana neutrino, generalizations of the
axial polarizability will also likely be relevant.
In what follows, the lattice QCD and EFTðπÞ calcula-

tions and the analysis of the axial polarizability are
summarized, with complete details presented in a sub-
sequent paper [7]. The potential for future lattice QCD
calculations to provide the necessary input to constrain
many-body calculations of 2νββ and 0νββ matrix elements,
and thereby reduce the uncertainties in calculated ββ-decay
rates, is also discussed.
Two-neutrino ββ decay.—The focus of this Letter is on

2νββ decay of the dinucleon system. The decay width is
given by

½T2ν
1=2�−1 ¼ G2νðQÞjM2ν

GTj2; ð1Þ

where Q ¼ Enn − Epp, G2νðQÞ is a known phase-space
factor [8,9], and the Gamow-Teller matrix element in the
two-nucleon system is

M2ν
GT ¼ 6

�
1

2

Z
d4xd4yhppjT½Jþ3 ðxÞJþ3 ðyÞ�jnni

�

¼ 6
X
l0

hppj ~Jþ3 jl0ihl0j ~Jþ3 jnni
El0 − ðEnn þ EppÞ=2

: ð2Þ

Here, Jþ3 ¼ ðJ13 þ iJ23Þ=
ffiffiffi
2

p
is the third component of the

ΔI3¼1 axial-vector current, JaμðxÞ ¼ q̄ðxÞγμγ5ðτa=2ÞqðxÞ,
and l0 indexes a complete set of zero-momentum hadronic
states with the quantum numbers of the deuteron. The
factors of 6 in Eq. (2) are due to rotational symmetry and
our normalization of the currents. We employ ~Jþ3 ¼

R
dxJþ3 ðx; t ¼ 0Þ to denote the zero-momentum current

at t ¼ 0.
As with forward Compton scattering, the amplitude can

be written in terms of a Born term, corresponding to an
intermediate deuteron state, and the isotensor axial polar-
izability which absorbs the contributions from the remain-
ing states in the above summation. By isospin symmetry,
this polarizability is most cleanly identified as the forward
matrix element of the I ¼ 2, I3 ¼ 0 component of the time-
ordered product of two axial-vector currents in the 1S0 np
ground state with the deuteron pole (the Born term)
omitted. For use below, isospin relations allow this matrix
element to be written as

hppjJþ3 ðxÞJþ3 ðyÞjnni ¼ hnpjJðuÞ3 ðxÞJðuÞ3 ðyÞjnpi

−
1

2
hnnjJðuÞ3 ðxÞJðuÞ3 ðyÞjnni

−
1

2
hnnjJðdÞ3 ðxÞJðdÞ3 ðyÞjnni; ð3Þ

where JðqÞ3 ðxÞ ¼ q̄ðxÞγ3γ5qðxÞ.
Pionless effective field theory.—EFTðπÞ [10–15] effi-

ciently describes two-nucleon systems in the regime where
momenta are small compared to the pion mass. This is an
appropriate tool with which to address 2νββ decays at
heavier quark masses, but the inclusion of explicit pion
degrees of freedom will likely be required at the physical
quark masses (0νββ decay probes higher momenta,
k ∼ 100 MeV, in large nuclei and likely also requires an
EFT with explicit pion degrees of freedom). In what
follows, the dibaryon formalism of EFTðπ Þ is utilized,
using the conventions for the strong-interaction sector
described in Ref. [15]. The nucleon degrees of freedom
are encoded in the field N, and the two-nucleon degrees of
freedom enter as the isosinglet ti and isotriplet sa dibaryon
fields while yt and ys describe the couplings between two
nucleons and the corresponding dibaryon fields. In this
formalism, the single axial-current interactions enter
through the Lagrangian [16–19]

Lð1Þ ¼ −
gA
2
N†Wa

3σ3τ
aN

þ
�
gA −

~l1;A
2M

ffiffiffiffiffiffiffiffi
rsrt

p
�
ðWa

3t
†
3s

a þ H:c:Þ; ð4Þ

where rsðtÞ is the effective range in the 1S0 (3S1) two-
nucleon channel, σi (τa) are Pauli matrices in spin (flavor)
space, gA and ~l1;A are the one- and two-nucleon axial
couplings, and Wa

3 is an axial isovector field aligned in the
j ¼ 3 spatial direction. The second term is constructed so
that ~l1;A corresponds to a purely two-body current effect.
The second-order isotensor axial interaction in the 1S0
channel enters as
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Lð2Þ ¼ −
�
Mg2A
4γ2s

þ
~h2;S

2Mrs

�
Wabsa†sb; ð5Þ

where Wab ¼ Wfa
3 Wbg

3 is the traceless symmetric combi-
nation of two axial fields at the same location, ~h2;S is the
scalar isotensor weak two-nucleon coupling, and γs ¼ffiffiffiffiffiffiffiffiffiffiffiffi
MBnn

p
with the binding energy of the 1S0 system being

Bnn (at the unphysical masses used herein, the 1S0 system is
bound [20]).
Calculation of the nn → pp amplitude, presented in

detail in Ref. [7], shows that

Mnn→pp ¼ −
jhppj ~Jþ3 jdij2

Δ
þMg2A

4γ2s
− H2;S; ð6Þ

where Δ ¼ Enn − Ed is the difference of the ground-state
1S0 and 3S1 energies. The parameter H2;S is the short-
distance two-nucleon, two-axial current coupling ~h2;S of
Eq. (5), redefined and rescaled to capture the effects beyond
the deuteron pole and two-nucleon states at energies below
Λ [7]. This expression depends on both the long-distance
contribution from the deuteron pole (the first term) and the
short-distance contributions encapsulated in the second and
third terms. (where “short-distance” here means the “non-
adiabatic” contribution; that is, every process other than
those proceeding via the bound 3S1 ground state). The
deuteron-pole contribution includes the effective quenching
of the axial charge through ~l1;A. A determination of the
nn → pp transition matrix element, along with an extrac-
tion of the pp → d amplitude allows for the isolation of the
unknown short-distance contribution, H2;S. Once this
counterterm is determined, few-body methods based on
EFTðπÞ or matched to them (for example, see Ref. [21]) can
incorporate the axial polarizability in computations of
decay rates of larger nuclei.
Lattice QCD calculations.—The present lattice QCD

calculations extend those of the pp-fusion cross section
and tritium β decay in Ref. [6]. The same hadronic
correlators calculated in the presence of external axial
fields are analyzed further to access second-order weak
responses to the external field. Recent calculations by the
RBC/UKQCD Collaboration in the kaon sector [22–25]
have demonstrated that long-distance second-order weak
effects can be constrained using lattice QCD. These
methods are extended to determine the second-order weak
matrix elements of the two-nucleon system.
As discussed in Ref. [6], calculations are performed on

one ensemble of gauge-field configurations generated
using a Lüscher-Weisz gauge action [26] and a clover-
improved fermion action [27] with Nf ¼ 3 degenerate
flavors of quarks. The quark masses are tuned to the
physical strange-quark mass, producing a pion of mass
mπ ≈ 806 MeV. The ensemble has a spacetime volume of
L3 × T ¼ 323 × 48 and a gauge coupling that corresponds

to a lattice spacing of a ∼ 0.145 fm. For these calculations,
437 configurations spaced by 10 hybrid Monte Carlo
trajectories are used and seven different sets of compound
propagators are generated from 16 smeared sources on each
configuration with both smeared (SS) and point (SP) sinks.
The compound propagators are produced with a single

insertion of Jðu;dÞ3 with couplings λu;d ¼ f0;�0.05;�0.1;
�0.2g. These propagators are used to produce correlation
functions,

CðhÞ
λu;λd

ðtÞ ¼
X
x

h0jχhðx; tÞχ†hð0Þj0iλu;λd ; ð7Þ

for all the allowed spin states of the one- and two-nucleon
systems, h ∈ fp; npð3S1Þ; nn; npð1S0Þ; ppg. Results for all
source locations on each configuration are averaged before
subsequent analysis.
The calculations use a lattice axial current with the finite

renormalization factor ZA ¼ 0.867ð43Þ [6]. Because of the
isotensor nature of the bilinear insertions, mixing with
other operator structures is highly suppressed. As the
dinucleon and deuteron states are both compact bound
states at this value of the quark masses [20], only
exponentially small volume effects are anticipated in the
extracted matrix element. This will become a more subtle
issue for future calculations with quark masses near the
physical values, as discussed in Ref. [7].
The second-order axial responses of the dinucleon

system are the primary focus of the current work. For an
up-quark axial current, the relevant background-field
correlators have the form

CðhÞ
λu;λd¼0ðtÞ
¼

X
x

h0jχhðx; tÞχ†hð0Þj0i

þ λu
X
x;y

Xt

t1¼0

h0jχhðx; tÞJðuÞ3 ðy; t1Þχ†hð0Þj0i

þ λ2u
2

X
x;y;z

Xt

t1;2¼0

h0jχhðx; tÞJðuÞ3 ðy; t1ÞJðuÞ3 ðz; t2Þχ†hð0Þj0i

þOðλ3uÞ; ð8Þ
from which the second-order term in the field strength λu
can be extracted from determinations at multiple values of
λu. Combining these correlators, and those for the down-
quark axial current, as specified in Eq. (3), leads to the
isotensor matrix element

CðtÞ ¼ 2Cðnpð1S0ÞÞ
λu;0

ðtÞj
λ2u
− CðnnÞ

λu;0
ðtÞj

λ2u
− CðnnÞ

0;λd
ðtÞj

λ2d
; ð9Þ

where each term on the right-hand side is the component of
the correlation functions that is second order in λu or λd, as
denoted. Using Eq. (3) and isospin symmetry, Eq. (9) can
be written as
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CðtÞ ¼
X
x;y;z

Xt

t1;2¼0

h0jχppðx; tÞT½Jþ3 ðy; t1ÞJþ3 ðz; t2Þ�χ†nnð0Þj0i:

ð10Þ
Up to discretization effects, insertion of appropriate com-
plete sets of states allows this expression to be written as

CðtÞ ¼ 2

a2
X
n;m;l0

ZnZ
†
me−Ent

hnj ~Jþ3 jl0ihl0j ~Jþ3 jmi
El0 − Em

×

�
e−ðEl0−EnÞt − 1

El0 − En
þ eðEn−EmÞt − 1

En − Em

�
; ð11Þ

where jni, jmi, and jl0i are zero-momentum energy
eigenstates with the quantum numbers of the pp, nn,
and deuteron systems, respectively. Here, Zn ¼ffiffiffiffi
V

p h0jχppjni and Zm ¼ ffiffiffiffi
V

p h0jχnnjmi are overlap factors,
and El0 ¼ Enn þ δl0 and En ¼ Enn þ δn are the energies of
the l0th and nth excited states in the 3S1 and 1S0 channels,
respectively.
Forming a ratio of Eq. (11) to the zero-field two-point

function,

RðtÞ ¼ CðtÞ
2CðnnÞ

0;0 ðtÞ
; ð12Þ

it is straightforward, utilizing the isospin symmetry of the
calculation, to show that [7]

a2R̂ðtÞ ¼ a2RðtÞ − jhppj ~Jþ3 jdij2
Δ

�
eΔt − 1

Δ
− t

�

¼ t
X
l0≠d

hppj ~Jþ3 jl0ihl0j ~Jþ3 jnni
El0 − Enn

þ cþ deΔt þOðe−δ̂tÞ; ð13Þ
where c and d involve complicated combinations of
ground- and excited-state transition amplitudes, and δ̂ is
the minimum energy gap to the first excited state in either
channel, and, for these calculations, δ̂ ≫ Δ. Importantly,
the coefficient of the linear term determines the axial
polarizability and can be extracted from

RðlinÞðtÞ¼ðeaΔþ1ÞR̂ðtþaÞ−R̂ðtþ2aÞ−eaΔR̂ðtÞ
eaΔ−1

ð14Þ

at late times. Finally, this result can be combined with the
deuteron-pole contribution to give a quantity that asymp-
totes to the bare Gamow-Teller matrix element at late times:

RðfullÞðtÞ ¼ RðlinÞðtÞ − jhppj ~Jþ3 jdij2
aΔ

→
t→∞ M2ν

GT

6aZ2
A
: ð15Þ

The four ratios used to determine M2ν
GT are shown in

Fig. 1 for both SS and SP source-sink combinations. Fits
are performed to the statistically more precise SP correla-
tors, and the values of the total matrix element and the

short-distance contribution, normalized by the naive deu-
teron-pole matrix element g2A=Δ, are given by

Δ
g2A

X
l0≠d

hppj ~Jþ3 jl0ihl0j ~Jþ3 jnni
El0 − Enn

¼ −0.04ð2Þð1Þ; ð16Þ

6
Δ
g2A

M2ν
GT ¼ −1.04ð4Þð4Þ: ð17Þ

In these expressions, the first uncertainties arise from
statistical sampling and from systematic effects from fitting
choices and deviations from Wigner symmetry [7]. The
second uncertainties encompass differences between analy-
sis methods. The leading discretization effects, which are
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FIG. 1. Ratios from Eqs. (12)–(15) used in the analysis. In each
panel, the orange diamonds (blue circles) correspond to the
SS (SP) data. The green bands show fits to the SP data in the
lower two panels. The SS data are slightly offset in the horizontal
direction for clarity. The difference between the SS and SP ratios
in the upper two panels is due to contamination that is removed in
constructing the subsequent quantities in the lower panels.
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potentially large on the numerically smaller polarizability
term, are removed by normalizing to the square of the
proton axial charge computed using the same lattice axial
current on the same ensemble.
Discussion.—The computed value of M2ν

GT above can be
used to determine the unknown EFTðπ Þ low-energy
constant H2;S. Taking the values of gA and the two-body
single-current matrix element from Ref. [6], and using
the calculated binding energies and effective ranges
of the two-nucleon systems [20,28], the result is
H2;S ¼ 4.7ð1.3Þð1.8Þ fm. The dominant contribution to
M2ν

GT comes from the deuteron pole with coupling g2A.
This is modified by two-body effects in the axial current
(~l1;A); this contribution shifts the leading-order result from
g2A=Δ to jhppj ~Jþ3 jdij2=Δ, which is approximately a 5%
shift. Interestingly, the calculated result suggests that the
additional axial polarizability contribution is of similar size.
The existence of this short-distance contribution precludes
accurately predicting ββ-decay matrix elements in a nuclear
many-body calculation by simply rescaling (quenching) gA.
The present results are obtained at an unphysical quark

mass without the inclusion of electromagnetism and isospin
breaking effects, and at a single lattice spacing and volume.
All these caveats may be important, particularly given that
the short-distance two-nucleon effects are only few-percent
contributions to the matrix elements. Such effects require
further investigation but are not expected to qualitatively
alter the conclusions of this work. Despite these qualifi-
cations, the potential for a relatively large contribution from
the isotensor axial polarizability is important, as terms of
this form are not included in current phenomenological
analyses of ββ decay. This observation, supported and
motivated by the numerical calculations, is the central point
of this Letter. In order to accurately predict 2νββ decay
rates with fully quantified uncertainties, the isotensor axial
polarizabilities of nuclei must be determined. Future lattice
QCD calculations in few-nucleon systems and light nuclei,
matched to nuclear many-body methods such as EFTðπ Þ,
offer the possibility of determining these contributions
which are difficult to access experimentally. However, in
order to undertake such calculations at the physical quark
masses, a number of difficulties related to the bilocal nature
of such weak processes must be overcome [7]. Additional
complications arise for 0νββ where these polarizability
contributions are also likely to be important in the case of
light Majorana neutrinos. Furthermore, the short-distance
strong-interaction contributions encapsulated in the iso-
tensor axial polarizability provide an inherent background
to extracting contributions from short-distance lepton-
number violating operators that are possible beyond the
light Majorana scenario [29–33].
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