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In this Letter, we present a measurement of the phase-space density distribution (PSDD) of ultracold
87Rb atoms performing 1D anomalous diffusion. The PSDD is imaged using a direct tomographic method
based on Raman velocity selection. It reveals that the position-velocity correlation function CxvðtÞ builds
up on a time scale related to the initial conditions of the ensemble and then decays asymptotically as a
power law. We show that the decay follows a simple scaling theory involving the power-law asymptotic
dynamics of position and velocity. The generality of this scaling theory is confirmed using Monte Carlo
simulations of two distinct models of anomalous diffusion.
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The phase-space density distribution (PSDD) contains
information concerning the degrees of freedom of a system
and allows calculation of any observable. An intriguing
system to look at in this context is that of anomalous
dynamics for which the mean square displacement scales as
hx2i ∼ t2α, with α ≠ 1=2. This type of dynamics, found in a
wide variety of systems in nature ranging from dynamics of
“bubbles” in denaturing DNA molecules [1], through
fluctuations in the stock market [2], to models describing
brief awakenings in the course of a night’s sleep [3], is
generally nonuniversal and system dependent [4–6].
A uniquely interesting model system for the study of

anomalous diffusion is that of cold atoms diffusing in a
dissipative 1D lattice, closely related to Lévy walks and
motion in logarithmic potentials, displaying such phenom-
ena as the breakdown of ergodicity and of equipartition,
memory effects, and slow relaxation to equilibrium [6–23].
The major advantage of such a system is the high degree of
control it enables over the physical parameters governing
the dynamics. One of the fundamental insights that can be
obtained from the PSDD of such a system is the phase-
space cross correlation between position and velocity Cxv.
Cxv can reveal the fingerprint of the underlying model and,
in particular, is essential for understanding concepts and
techniques such as adiabatic cooling in lattices [24],
stochastic cooling [25], point source atom interferometry
[26,27], and enhanced velocity resolution [28,29], along-
side elementary notions in quantum mechanics [30]. These
correlations have been surprisingly overlooked in both
theory and experiment, perhaps due to the lack of a direct
method for imaging the phase space of atomic clouds,
which does not require cumbersome mathematical tools or
a specific potential [31–35]. No analysis of the dynamics of
the correlations has been reported to the best of our
knowledge.
In this Letter, we analyze and measure the dynamics

of the position-velocity correlation of an ensemble of
classical particles, originating from a pointlike source

and undergoing one-dimensional anomalous superdiffu-
sion. The measurement is done using a new tomographic
method for direct phase-space imaging, utilizing a combi-
nation of the straightforward tools of absorption imaging
and the velocity sensitivity of Raman control. We obtain
qualitative agreement with theory in the form of a scaling
argument we derive, connecting the temporal asymptotics
of the correlations with those of position and velocity. We
verify the universality of the scaling law using two different
types of Monte Carlo simulations.
The position-velocity correlation function is defined as

CxvðtÞ≡ hδx⃗ðtÞ · δv⃗ðtÞi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hδx⃗2ðtÞihδv⃗2ðtÞi
p ; ð1Þ

where for any observable A and PSDD fðx; vÞ, hAi ¼
R

Afðx; vÞdxdv and δA ¼ A − hAi. Calculation for an
initially uncorrelated ensemble of particles, reveals that
CxvðtÞ asymptotically approaches unity for ballistic motion
and decays as 1=

ffiffi

t
p

for normal diffusion [36]. The inherent
time scales depend strongly on the initial conditions of
the ensemble, and their observation demands a pointlike
atomic source.
For the general case of power-law dynamics and anoma-

lous diffusion, we use Eq. (1) to derive a scaling argument,
assuming power-law behavior of both hδx2ðtÞi ∼ t2α and
hδv2ðtÞi ∼ t2β. The scaling of the numerator of Eq. (1) is
calculated by taking the derivative

hδx · δvi ∼ dhδx2i
dt

∼ t2α−1: ð2Þ

The denominator of Eq. (1) gives tαþβ. Together this yields

CxvðtÞ ∼ tα−β−1 ∼ tγ: ð3Þ

The ðα; βÞ ¼ ð1=2; 0Þ normal-diffusive limit and ðα; βÞ ¼
ð1; 0Þ ballistic limit give γ ¼ −1=2 and γ ¼ 0, respectively,
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indicating a decay of 1=
ffiffi

t
p

for normal diffusion and
saturation at a nonzero value for ballistic motion.
In the experiment [Fig. 1(a)], a cloud of ∼105 87Rb atoms

is loaded into a crossed dipole trap from a Raman-sideband
cooled magneto-optical trap. After a short evaporation and
thermal equilibration stage, the pointlike atomic cloud
(∼30 μm in size, T ≈ 10 μK) is loaded adiabatically into
a single-beam, elongated dipole trap providing confinement
in the radial axis (for details, see [16]). The atoms then
undergo anomalous superdiffusion for lattice exposure time
t, in a 1D Sisyphus lattice of depth U0 [37], originating
from a distributed feedback diode laser detuned −66 MHz
relative to the transition between states 52S1=2, F ¼ 2 and
52P3=2, F0 ¼ 3.
Then, we perform tomographic phase space imaging by

transferring atoms whose velocity lies within a narrow
velocity class, from the jF ¼ 1i lower hyperfine ground
state to the upper ground-state level jF ¼ 2i using a Raman
velocity-selective π pulse with two counter-propagating
beams. The center of the selected velocity class is scanned

by varying the two-photon detuning of the pulse, and the
Rabi frequency sets its width [38]. These atoms are imaged
onto a CCD camera using state-selective absorption imag-
ing. Themeasured PSDD is depicted, for ballistic expansion
(i.e., withU0 ¼ 0), in the left and right insets of Fig. 1(b) for
short (0.1 msec) and long (4.1 msec) times, respectively,
revealing the expected shearing of the PSDD. The position-
velocity correlation is extracted from the data [39] and
shown in Fig. 1(b) as a function of free propagation time t
(termed “time of flight” for U0 ¼ 0). Correlations brought
about by ballistic expansion, starting with an uncorrelated
Gaussian phase-space are given by [30]

Cx;vðtÞ ¼
ωosct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2
osct2

p ; ð4Þ

whereωosc ≡ σvðt ¼ 0Þ=σxðt ¼ 0Þ sets, under thermal equi-
librium, the ratio between the initial standard deviation of the
velocity distribution, σv and that of the position distribution
σx. It also represents the oscillation frequency in the trap
prior to the release. This parameter sets the initial slope of the
buildup of the correlations.
To establish the validity of the new tomographic method,

we test it on this textbook case.We fit the ballistic expansion
phase-space tomography data shown in Fig. 1(b) to Eq. (4),
and obtain a value of ωosc ¼ 2π × ð213� 15Þ Hz, in excel-
lent agreement with the value obtained independently of
ωosc ¼ 2π × ð230� 3Þ Hz,measuredby giving a small kick
to the trapped atoms, and imaging the oscillations in the
trap. The measured zero-time correlation value is con-
sistent with zero up to the measurement error, as expected
from an equilibrated cloud. The saturation value obtained
from the fit, C∞ ¼ 0.77� 0.01, is subunity due to a
broadening effect arising from a finite two-photon Rabi
frequency required to obtain good SNR. The broadening
in the correlation is a function of the ratio between the
spectral width of the velocity-selective Raman π pulse
(rescaled by 2kL, the wave number of the Raman laser)
and that of the velocity distribution. As the Rabi fre-
quency becomes small compared to the width of the
velocity distribution the measured correlation becomes
closer to the real value. The Rabi frequency selected for
the experiment reflects the tradeoff between minimizing
the broadening and obtaining good SNR. Calibrating this
effect, we rescale the data such that C∞ ¼ 1. Figure 2
presents the measured, rescaled position-velocity corre-
lations as a function of lattice exposure time t and lattice
depth in linear (a) and log-log (b) scales, ranging from
ballistic to normal diffusion. It shows the initial buildup
and sequential decay of the correlations.
To develop a theoretical description, we first consider the

limits of normal diffusion and ballistic expansion, using the
Langevin equation approach to normal Brownian motion
[36,40,42]. The instantaneous acceleration of a particle in a
medium is given by _v⃗ ¼ −Γv⃗þ A⃗, where v⃗ is the velocity
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FIG. 1. (a) A sketch of the experimental setup. Laser-cooled
87Rb atoms are loaded into a crossed optical dipole trap and
evaporated. They are then transferred into a single-beam red-
detuned tube trap and perform anomalous diffusion in a dis-
sipative optical lattice at a certain lattice depth for a given time.
Their phase-space distribution is then measured using the tomo-
graphic method described in the text. (b) Measured position-
velocity correlation for ballistically expanding atoms. Solid line
represents the fit to Eq. (4). Left (right) insets show short (long)
time phase-space reconstruction. Integrals over the velocity and
position axes are presented along with a fit to a Gaussian, taken
for ballistic expansion after 0.1 (4.1) msec time of flight. The
shearing of phase-space indicates correlations between position
and velocity.
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vector, Γ is the drag coefficient setting the time scale for

transition between the ballistic and diffusive regimes, and A⃗
is the Langevin random acceleration. For simplicity, we
assume hxi ¼ hvi ¼ 0, hence, δx ¼ x and δv ¼ v. The
numerator of Eq. (1) can be calculated by noticing that

d
dt

hx⃗ · v⃗i ¼ −Γhx⃗ · v⃗i þ hv⃗2i; ð5Þ

where, due to the randomness of the Langevin acceleration,

hx⃗ · A⃗i ¼ 0. hv⃗2i is given by

hv⃗2i ¼ σ2v0 þ ðσ2veq − σ2v0Þð1 − e−2ΓtÞ; ð6Þ

with σ2v0 denoting the initial variance of the velocity
distribution, and σ2veq¼σ2vðt→∞Þ. Substituting into Eq. (5)
and solving under an uncorrelated initial condition yields

hx⃗ðtÞ · v⃗ðtÞi ¼ e−2ΓtðeΓt − 1Þ½σ2veqðeΓt − 1Þ þ σ2v0 �
Γ

: ð7Þ

Calculating the terms in the denominator [36,40] under the
initial conditions hx⃗2ð0Þi ¼ σ2x0 and dhx⃗2i=dtjt¼0 ¼ 0, and
setting σ2v0 ¼ σ2veq (see [39] for full expression), we obtain

CxvðtÞ ¼
e−Γt=2ðeΓt − 1Þ

f2þ eΓt½ðΓ=ωoscÞ2 þ 2Γt − 2�g1=2 : ð8Þ

Equation (8) reveals the initial linear rise in correlation
due to the ballistic time scale of the dynamics and the
asymptotic decay ∼t−1=2 of the normal-diffusive correla-
tions. The ballistic regime [Eq. (4)] is obtained from it by
taking the Γ → 0 limit.
Equation (8) can be generalized to account for anoma-

lous diffusion and, hence, the power-law decay anticipated
by Eq. (3) as

CxvðtÞ ¼
e−Γt=2ðeΓt − 1Þ

f2þ e−Γt=2γ½ðΓ=ωoscÞ−1=γ þ 2Γt − 2�g−γ : ð9Þ

This preserves Cxv ∼ tγ at long times and the initial Cxv ∼ t
at short times. It recovers Eq. (8) for γ ¼ −1=2. In Figs. 2(a)
and 2(b), we show, in solid lines, the fit of this function
to the data with γ, ωosc and Γ as fit parameters [39]. There
exist two time scales and two temporal scalings. The
buildup scales linearly in time and saturates at unity with
a time scale of 1=ωosc. The decay scales like tγ with a time
scale of 1=Γ. The transition between the buildup and decay
occurs at a time scale τm, which is approximately the
average ð1=ωosc þ 1=ΓÞ=2 [39]. Henceforth, it is evident
that observing the short time correlation dynamics requires
τm to be within the measurement time.
Figure 3(a) presents the position variance hδx2ðtÞi, for

various lattice depths. The position distribution is obtained
by integrating over the velocity axis of the tomographic
phase-space images [see insets of Fig. 1(b)]. Fitting
hδx2ðtÞi − hδx2ð0Þi ∼ t2α reveals that the entire superdiffu-
sive regime is accessible in the experiment, as seen in the
inset, bearing qualitative agreement with [16]. Figure 3(b)
presents the decay exponent γ extracted from the fits of
Fig. 2 as a function of α − 1. The velocity distribution
equilibrates at a fast time scale (1=Γ < 1 msec) to a steady-
state value, meaning β ≈ 0 [43]. The results (empty sym-
bols) follow the trend of the scaling argument prediction of
Eq. (3) but are significantly beneath it. Excluding the
intermediate times 0.5 ≤ t ≤ 2.1 msec from the fit yields
qualitatively similar results, but with better agreement to the
scaling argument (full symbols). This indicates that our
interpolation function [Eq. (9)] describes the short and long
time dynamics well but fails to describe the intermediate
times. To test the generality of our scaling argument, we
numerically study the dynamics of the position-velocity
correlations within the framework of two distinct models
featuring anomalous diffusion. The first describes semi-
classical atomic motion in a 1D Sisyphus lattice [19], using
the Langevin phase-space equations

_x ¼ v; _v ¼ −
v

1þ v2
þ

ffiffiffiffiffiffiffi

2D
p

ξðtÞ: ð10Þ

The white noise term ξðtÞ is Gaussian and has zero
mean. The initial conditions are Gaussian, uncorrelated
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FIG. 2. (a) Rescaled position-velocity correlations as a function
of lattice exposure time and lattice depth. Colors and symbols
indicate different lattice depths, U0. ER is the recoil energy. At
short times, the correlations build up and are later quenched at
varying rates, depending on the anomalous dynamics. Solid lines
indicate the fit to the interpolation formula of Eq. (9). (b) Fit to the
interpolation formula of Eq. (9) on a log-log scale, excluding
interim times 0.5 ≤ t ≤ 2.1 msec. Shaded symbols are excluded
points. The U0 ¼ 0 data set has no exclusions.
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distributions of unity standard deviation in both velocity and
position. The diffusion constant is related to the depth of the
lattice by D ¼ cER=U0, where c is a dimensionless param-
eter of order 10 [7,8]. Figure 4(a) presents the simulated size
of the cloud as a function of time and diffusion constant for
N ¼ 104 atomic trajectories. The power-law dependence
hx2i ∼ t2α is evident. The width of the velocity distribution
scales like a power law in time [14]. The position-velocity
correlation is calculated using the definition [Eq. (1)], and
shown in Fig. 4(b). We fit the long-time decay of the
correlation to tγ and plot γ as a function of α − β − 1 in
Fig. 4(e), for two distinct scenarios, one where the velocities
are initialized in some arbitrary initial size (orange triangles)
and one where they are initialized at their steady-state value
corresponding to each lattice depth, setting β ¼ 0 (blue
circles). The second simulation is a Lévy walk simulation
[6], where particles are initialized in an uncorrelated
Gaussian phase space and proceed to perform walks of
durations τ, drawn from a unity-scaled Lomax distribution
ψγ0ðτÞ ¼ γ0=ð1þ τÞ1þγ0 . The width of the velocity distri-
bution remains constant throughout the simulation (β ¼ 0).
1 < γ0 < 2 gives access to the superdiffusive regime.

Figure 4(c) shows the size of the cloud as a function of
time and Fig. 4(d) the power-law decay of the correlations.
Figure 4(e) shows the summary of the relation between the
exponents α, β, and γ obtained using this method (red
squares). All the simulation results for the two distinct
anomalous diffusion models agree well with theory, indicat-
ing the generality of our scaling argument [Eq. (3)].
In summary, we present a measurement of the initial

buildup and sequential decay of position-velocity correla-
tions for a system of cold atoms performing anomalous
superdiffusion. We find that the correlations decay asymp-
totically with a power-law exponent relating to the power-
law exponents of the position variance and the velocity
variance in qualitative agreement with a simple scaling
argument we derive. The universality of the scaling law is
validated using Monte Carlo simulations of two distinct
models of anomalous diffusion. This universal relation
between the long time decay of Cxv and other exponents
that are easier tomeasure can be used to inferCxv for systems
where it cannot be measured directly. The position-velocity
correlations are obtained using a new direct method to
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FIG. 3. (a) The variance of the position as a function of time on
a log-log scale for various lattice depths,U0. Solid lines are linear
fits, whose slope is summarized in the inset, bearing good
qualitative agreement with [16]. The data are shifted to cross
at the origin. Black dotted lines represent the ballistic and normal-
diffusive limits, showing that the entire superdiffusive regime is
accessible. (b) Experimental demonstration of the scaling relation
of Eq. (3) for the case of β ¼ 0 (relaxed velocity dynamics). The
exponent of the correlation, γ, extracted from fitting the inter-
polation function of Eq. (9) to the data of Fig. 2(a), is plotted in
empty symbols as a function of α − 1. The full symbols represent
a fit excluding 0.5 ≤ t ≤ 2.1msec. The colors and shapes
correspond to the lattice depths as in Fig. 2. The solid line is
the theoretical scaling relation.
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FIG. 4. Results of numerical Monte Carlo simulations of two
anomalous diffusion models. (a) hδx2i as a function of time for
different lattice depths, corresponding to the range of super-
diffusive behavior. Larger slopes correspond to shallower
lattices. A linear fit to the long-time data enables extraction of
α. (b) Position-velocity correlations, showing the predicted
power-law dependence. Stronger decay corresponds to deeper
lattice. (a), (b) are obtained using the Langevin simulation of
Eq. (10). (c), (d) Similar behavior, obtained from the Lévy walk
simulation. Larger slopes correspond to smaller γ0 in (c), stronger
decay corresponds to larger γ0 in (d). (e) Validation of the scaling
relation γ ¼ α − β − 1. Light blue circles: preequilibrated dy-
namics in the Langevin simulation (β ¼ 0), red squares: Lévy
simulation (inherently preequilibrated, β ¼ 0), and orange tri-
angles: velocity dynamics in the Langevin simulation (β ≠ 0).
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measure the phase-space density distribution that can be
used to access different types of phenomena such as
deviations from the equipartition theorem [22,23] for the
nonequilibrium steady-state scenario of the discussed sys-
tem with the addition of an underlying harmonic potential,
and to probe phase-space correlations in systems of a
quantum nature, described by a single wave function
[30,44]. The short-time dynamics in anomalous diffusion
is model dependent and nontrivially experimentally acces-
sible [45]. Our work invites theoretical analysis of the
correlation function as a fingerprint of the details of the
underlying model.

The authors would like to thank Eli Barkai, Andreas
Dechant, and Erez Aghion for valuable theoretical input
and Yoav Sagi, Hagai Edri, and Noam Matzliah for
discussions.
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