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The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is
increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological
properties of matter. In this setup, the rate of variation ε of local terms is indeed small compared to the gap,
but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body
systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of
the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that
remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo’s linear
response formula for a broad class of gapped interacting systems. We predict that the density of
nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends
on the dimension.
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Introduction.—The premise of adiabatic theory that slow
driving keeps a system close to its ground state is central to
our understanding of gapped quantum systems. It underlies
the discussion of the quantum Hall effect (QHE), non-
dissipative response theory, or the classification of gapped
phases of matter. It is also used to justify adiabatic control
methods employed in manipulation of artificial states of
matter. Despite its importance no proof of the adiabatic
theorem for many-body (extended) systems is known.
Phrased differently, there is no version of adiabatic per-
turbation theory that respects locality.
In this Letter we fill this gap by deriving an adiabatic

theorem for interacting, extended systems that remain
gapped in the thermodynamic limit. This covers some of
the most important phenomena in condensed matter phys-
ics: the QHE, topological order, and superconductivity. To
mention a few concrete models, our result applies to spin
chains in the Haldane phase such as the Affleck-Lieb-
Kennedy-Tasaki model [1], stabilizer codes [2], or the
transverse field Ising model. We demonstrate the utility of
the theorem by giving the first mathematical proof of
Kubo’s formula for interacting systems.
Adiabatic theory was first applied to extended systems in

connection to the QHE. In a series of papers, Thouless et al.
[3–5] and Laughlin [6] explained the quantization of Hall
conductance by connecting the response coefficients to
Berry’s curvature via adiabatic response theory. The con-
nection was further clarified in the works of Avron et al.
[7–9], and similar methods were employed to study the
fractional quantum Hall effect [10], topological insulators
[11], and other novel quantum phases of matter [12]. In all
these works the validity of the adiabatic approximation
for interacting systems is either taken for granted, or the
scaling of the driving rate with the volume is unphysical.

In a separate line of research, the adiabatic approxima-
tion in many-body systems provides the basic theoretical
framework for quantum annealing [13–15]. In this quantum
simulation or computation method a ground state of an
interacting Hamiltonian is reached from an initial separable
ground state by slowly turning on the interactions. In a
hard computational problem the gap of the Hamiltonian
closes during the process and such crossing points give
the dominant contribution to the error. If the gap does
indeed not close, the target ground state can be efficiently
simulated on a classical computer [16]. Our result provides
the quantum computational complexity of these algorithms,
namely, that target ground state is reached in a time of
order 1 in the number of spins.
The classification of gapped phases of matter is a

question at the intersection of the above-mentioned fields.
Hastings and Wen [17,18] derived a basic property of such
a gapped ground state phase: The local unitary equivalence
of ground states along a path Hs, 0 ≤ s ≤ 1, of gapped
Hamiltonians, which implies the smoothness of ground
state expectation values. We give a complementary dynami-
cal result. By changing H0 to H1 in a time of order ε−1, the
expectation with respect to the solution of the driven
Schrödinger equation remains ε-close to the instantaneous
ground state expectation, uniformly in the volume.
Colloquially, the ground state of H0 is transformed into
the ground state of H1 up to a small diabatic error.
Quantum adiabatic theory has a long tradition going back

to Born, Fock [19], and Kato [20]. The latter realized that
one can add a term εKs to the Hamiltonian to make the
adiabatic approximation exact. Following [17], we call Ks
the generator of quasiadiabatic (QA) evolution. The gen-
erator is not unique, and in a seminal paper [17] it was shown
that there is an almost local choice of Ks; see also [21]. In a
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time of order ε−1 such an added term generically contributes
an error of order 1 compared to the real evolution. We show
that one can add an extensive quasilocal term Yn;s of order εn

to the Hamiltonian to get an evolution that follows a dressed
ground state ϕn;s which is ε close to the true ground state. In
contrast to previous dressing constructions [22–26] ours is
local in both space and time; see Fig. 1. It is also specific to
the many-body context that the solution of the Schrödinger
equation ψðsÞ is only εn−ðdþ1Þ close to ϕn;s, where d is the
dimension. In view of this, construction of local higher-order
correction terms is not used here to improve the adiabatic
theorem but it is essential to obtain it.
In shortcuts to adiabaticity [27,28], the correction term is

employed as a control method. In this setting, Ks is called a
counterdiabatic driving and Yn;s is called a counterdiabatic
driving of order n [29]. There is great interest in engineer-
ing these correction terms and using them to reach a final
ground state with higher fidelity. From this point of view
we provide an explicit local choice of Yn;s. Transitionless
quantum driving for many-body quantum systems was
studied in [30–32].
Many-body adiabatic theorem.—We now explain the

problem in details. Let Ωs be the ground state of Hs. If we
assume that (i) the ground state energy is an isolated and
simple eigenvalue separated from the rest of the spectra
uniformly for all 0 ≤ s ≤ 1, and (ii) the ground state Ωs is
smooth enough, then the adiabatic theorem [33–35] says
that the solution of the Schrödinger equation in a rescaled
time s ¼ tε,

ε
d
ds

ψðsÞ ¼ −iHsψðsÞ; ψð0Þ ¼ Ω0; ð1Þ

satisfies jjψðsÞ − eiθðε;sÞΩsjj ≤ Cε, where the constant C
depends on the family Hs, and θðε; sÞ contains a dynamical
phase ∝ ε−1 and the more meaningful Berry phase. The
rough estimate

∥ψðsÞ − eiθðε;sÞΩs∥ ≈ ε

Z
s

0

∥ _Hs0∥
g2s0

ds0;

where gs is the instantaneous gap at time s, yields the
volume dependence of C: Since the energy is extensive, the
error grows as volume even though the gap remains open,
marking the failure of the standard adiabatic estimates for
extended systems.
It is instructive to examine this in detail for the

noninteracting Hamiltonians Hs ¼
P

xDx;s; for example,

Dx;s ¼ h⃗s · σ⃗x with some varying magnetic field. Then the
solution ψðsÞ ¼⊗x ψxðsÞ of (1) is a product state, and by
the standard adiabatic theorem each ψxðsÞ satisfies

ψxðsÞ ¼ eiθxðε;sÞΩx;s þOðεÞ;
namely, hψxðsÞjeiθxðε;sÞΩx;si ¼ 1 −OðεÞ. This however
implies that the overlap of the tensor products decreases
as ½1 −OðεÞ�V with V being the volume. In the limit of an
infinite volume, the vectors ψðsÞ and Ωs become orthogo-
nal, a phenomenon reminiscent of Anderson’s orthogon-
ality catastrophe [36]. This shows that the breakdown of the
standard adiabatic theorem cannot be argued away.
This consideration suggests the solution: The mismatch

between ψðsÞ and eiθðε;sÞΩs must be measured in a
physically more meaningful way, typically by looking at
expectation values of local operators. For independent spins
the corresponding adiabatic theorem is immediate.
The core of the problem is dealing with interactions. In

the adiabatic setting, local interactions acting for a time of
order ε−1 yield a propagation over a distance of order
vLRε−1, where vLR is the Lieb-Robinson velocity [37,38].
On the other hand to establish a local adiabatic theorem
we need to show that all correlations beyond a certain finite,
ε-independent length scale are negligible.
Let us now give the precise phrasing. For concreteness

we consider a quantum spin system [39–41] on the
d-dimensional torus ΛL ≡ Zd=ðLZÞd with a volume (num-
ber of lattice sites) Ld. The Hamiltonians are of the form

Hs ¼
X
X⊂ΛL

HX;s; ð2Þ

where the interaction term HX;s acts on the spins located in
the subset X only and it is smooth in s. We moreover assume
that Hs have finite range, i.e., HX;s ¼ 0 whenever jXj > r,
where the range r is independent of volume. We say that Hs
is a gapped family if the spectral gap above the ground state
energy remains open uniformly in s and in the volume.
In order to measure the local size of an extensive operator

B ¼ P
XBX, we use the norm

∥B∥loc ≔ sup
x

X
X∶X∋x

∥BX∥:

Clearly, ∥B∥loc may remain bounded when L → ∞, in
which case we call B quasilocal, even though the more
precise statement is that “B is a sum of quasilocal terms.”
We assume that Hs is locally smooth, in the sense that
∥∂k

sHs∥loc ≤ Ck for all k, and that the driving starts
smoothly, ∂k

sHs ¼ 0 at s ¼ 0.

(a)

(b)

FIG. 1. The dressing transformation of order n. The Hamiltonian
H has nearest neighbor couplings (a), and its ground state Ω is
correlated on length scales of order 1. The dressed Hamiltonian
UHU� couples all sites in a ball of radius growing linearly with n
(b). However, the strength of the coupling between the sites i and
iþ n is of order εn. Correlations in the dressed ground state ϕ
induced by U are confined on length scales of order n.
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Under these conditions we show that the dressed ground
state ϕn;s of order n, constructed recursively below, follows
the evolution up to order n − d − 1.
Theorem 1. Let Hs be a family of gapped, locally

smooth, finite-range Hamiltonians of the form (2) for
0 ≤ s ≤ 1. Then the solution ψðsÞ of the Schrödinger
Eq. (1) satisfies

jhψðsÞjOψðsÞi − hϕn;sjOϕn;sij ≤ Cεn−d−1 ð3Þ
and, in particular,

jhψðsÞjOψðsÞi − hΩsjOΩsij ≤ Cε ð4Þ
for any local observable O, and with constant C indepen-
dent of s, L.
To avoid discussing the dynamical phase, we henceforth

assume HsΩs ¼ 0. This can always be achieved by a time-
dependent gauge transformation. We also incorporate the
Berry phase into Ωs by choosing hΩsj∂sΩsi ¼ 0.
Let us now develop the proof, using the intuition

outlined above. We construct a quasilocal As for which
∥As∥loc ¼ OðεÞ uniformly in L and s, and define a unitary
dressing transformation Us ¼ e−iAs . Then, the vector
ϕs ¼ UsΩs is close toΩs in the sense that local expectation
values differ by an order ε [42]. Furthermore, As is chosen
so that ϕs is the solution of a Schrödinger equation with an
additional driving term Ys that is quasilocal and εn small,

ε
d
ds

ϕs ¼ −iðHs þ YsÞϕs; ϕ0 ¼ Ω0: ð5Þ

The largest order n that can be obtained is only bounded by
the smoothness of the Hamiltonian. The vanishing of initial
derivatives of the Hamiltonian ensures that ϕ0 ¼ Ω0.
Without this condition ϕ0 is only ε close to Ω0 and such
an error cannot be controlled. We prove that (5) suffices to
deduce (3) but the idea is clear: the solution of the equation
without counterdiabatic driving (1) is close to the solution
with driving. Although the ansatz of a dressing trans-
formation echoes the standard constructions such as [25],
its implementation is conceptually and technically of a very
different nature, ensuring locality in both time and space.
The counterdiabatic driving Yn: Let us now explain how

to derive (5). To avoid clutter, we drop the parameter s since
all quantities carry s dependence. For n ¼ 1, Y1 ¼ εK does
the job. Indeed, by the Lieb-Robinson bound, the QA
generator is quasilocal and satisfies ∂Ω ¼ −iKΩ; hence also

ε∂Ω ¼ −iðH þ εKÞΩ;
which is indeed of the form (5) but with U ¼ 1, i.e., A ¼ 0.
We move now to general n with U ¼ e−iA and the ansatz

A ¼ P
n
j¼1 ε

jAj. The following identity is the starting point
of our analysis:

ε∂ϕ¼−i½εi∂UU†þεUKU†þðUHU†−HÞþH�ϕ: ð6Þ

This follows simply by first noting that ∂ϕ ¼ ∂UU†ϕþ
U∂Ω, then using again the QA flow to resolve ∂Ω and
adding UHU†ϕ ¼ UHΩ ¼ 0. The first three of four terms
in the bracket give the driving term Yn.
The case n ¼ 2. We first check the claim for n ¼ 2,

which elucidates the main mechanism at work. Expanding
the exponential in U, we find that Y2ϕ ¼ Olocðε2Þϕþ
εUð−i½A1; H�Ωþ KΩÞ and hence Y2 is of order ε2 pro-
vided that

−i½A1; H�Ωþ KΩ ¼ 0: ð7Þ
Hence we need to choose A1 so that

A1Ω ¼ iH−1KΩþ C1Ω; ð8Þ
where H−1KΩ is well defined because H has a gap and
hΩjKΩi ¼ ihΩj∂Ωi ¼ 0. The freedom to pick any constant
C1 is crucial later on. The key point is to solve (8) with a
quasilocal A1. This can be achieved by using a trick that lies
at the heart of the QA flow, namely, the representation

iH−1KΩ ¼
Z

dthðtÞe−itHKΩ ¼
Z

dthðtÞτtðKÞΩ; ð9Þ

where τtðKÞ ¼ e−itHKeitH and h is a fast decreasing
function with Fourier transform ĥðωÞ ¼ i½1=ωþ vðωÞ�
where v is a real-valued function supported in ð0; gÞ.
Crucially, the right-hand side of (9) is of the form LΩ
with a quasilocal L. Indeed, hðtÞ is cut off at large times
while the Lieb-Robinson bound allows one to localize
τtðKÞ. For proofs and examples of such h we refer to
[17,21]. In summary, we reach our goal by choosing

A1 ¼
Z

dthðtÞτtðKÞ þ C1:

General n. For n > 2, Ynϕ is of order OlocðεnÞϕ,
provided the Aj’s satisfy higher-order analogues of (7),

ðMp þ NpÞΩ ¼ 0 ð10Þ
for 0 ≤ p ≤ n − 1. Writing adAðBÞ≡ ½A;B�,

Mp ¼
X

j∶dðjÞ¼p

ð−iÞk
k!

adAjk
…adAj1

ðHÞ ð11Þ

Np ¼ i
X

j∶dðjÞ¼p−1

ik

k!
adAjk

…adAj2
ð∂Aj1Þ ð12Þ

for p ≥ 2, where the sum is over finite index sequences
j ¼ ðj1;…; jkÞ and dðjÞ ¼ j1 þ � � � þ jk. Provided that we
have solved this problem already up to p − 1, i.e., all Aj,
j ≤ p − 1 can be chosen to be quasilocal, we can solve it
for Ap. Indeed, the only term involving Ap is the term
corresponding to j ¼ ðpÞ in Mp so we can recast (10) as

iHApΩþ ðLp þ ∂Ap−1ÞΩ ¼ 0;
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where we used again HΩ ¼ 0, and we separated the
term ∂Ap−1, corresponding to j ¼ ðp − 1Þ in Np to prepare
for the sequel. Since Lp consists entirely of iterated
commutators of quasilocal terms, it is itself quasilocal.
Analogously to the case n ¼ 2, the equation can be solved
provided that

hΩjðLp þ ∂Ap−1ÞΩi ¼ 0; ð13Þ
in which case Ap is chosen as

Ap ¼
Z

dthðtÞτtðLp þ ∂Ap−1Þ þ Cp: ð14Þ

To satisfy (13), we use the remaining freedom of choosing
the constants Cj. More precisely, (13) holds by taking it to
be a solution of ∂Cp−1 ¼ hΩjði½K;Ap−1� − LpÞΩi.
To conclude, let us give an explicit expression for the

remaining external driving term Yn for n > 1. It is given by
Yn ¼ U ~YnU† with

~Yn ¼
XðnÞ

j∶dðjÞ≥n
εdðjÞ

ð−iÞk
k!

adAjk
…adAj1

ðHÞ

þ i
XðnÞ

j∶dðjÞ≥n
ε1þdðjÞ i

k

k!
adAjk

…adAj2
ð∂Aj1Þ; ð15Þ

where the superscript (n) on the sums indicates that
sequences j should be made with ji < n only. This shows
that Yn is indeed quasilocal, with ∥Yn∥loc ¼ OðεnÞ.
Proof of the theorem: Having constructed the counter-

diabatic quasilocal terms Yn;s, we proceed by employing
ordinary perturbation theory. LetOðs; s0Þ be the Heisenberg
evolution from time s0 to s corresponding to (1) of a local
observable O. Then, by Duhamel’s principle

hψðsÞjOjψðsÞi

¼ hϕsjOjϕsi þ
i
ε

Z
s

0

hϕs0 j[Yn;s0 ;Oðs; s0Þ] ϕs0 ids0:

By the Lieb-Robinson boundOðs; s0Þ is supported in a ball
of radius of order ε−1ðs − s0Þ up to an exponentially small
tail [43]. Hence we get jhϕs0 j½Yn;s0 ;Oðs; s0Þ�ϕs0 ij ≤ Cεn−d.
This establishes (3), which in turn implies (4) using
hϕsjOϕsi − hΩsjOΩsi ¼ OðεÞ.
Linear response theory.—A major theoretical applica-

tion of the expansion presented above is a rigorous proof
of linear response theory. The response per unit volume of
an extensive observable X is to leading order proportional
to a drive φ, L−dhδXi ¼ fδφþ oðδφÞ, with a response
coefficient f given by

f ¼ lim
ε→0

lim
L→∞

L−d hψðsÞjXψðsÞi − hΩsjXΩsi
ε∂sφ

: ð16Þ

Here, ψðsÞ is the solution of (1) with Hs ≡Hφs
. Though

a canonical expression for f is a textbook material [44], a
mathematical proof of the existence of the limit is a

notoriously hard problem [45]. Our results allows us,
however, to control this limit through the estimate

jhψ jXψi − hΩjXΩi − iεhΩj½A1; X�Ωij ≤ CLdε2;

with a volume-independent constant C. From (16) we then
have the Kubo linear response formula in a form

f ¼ ih½A1; X�i;
where h·i denotes the ground state expectation value per
unit volume. One then recovers various standard response
expressions [7,46–49] by plugging an appropriate choice of
X and Hs. This is the first mathematical proof of linear
response theory for a broad class of interacting systems in
the correct order of limits, i.e., the thermodynamic limit
first. See [50–55] for other advances on this problem.
This result complements first principle proofs of the

quantization of Hall conductance in interacting sys-
tems [56,57].
Nonperturbative effects.—As indicated in (3), the dia-

batic error can be made nonperturbative (smaller than any
order in ε) provided Hs becomes constant at the end of the
protocol, in which case ϕs ¼ Ωs at s ¼ 1. In the standard,
one-body adiabatic theorem, this remaining error is of order
e−minsgs=ε. We show that in the many-body case the scaling
depends on the dimension. Because of the time evolution in
(14), the typical range of the local terms in Ap cannot be
smaller than ½ðvLR=gÞp�d. If we assume that the term
ð1=2Þ½Ap−1; ½A1; H�� in Lp gives the leading contribution
to the right-hand side of (14), then we find [58] that

∥Ap∥loc ∼ pd∥H∥loc∥A1∥loc∥Ap−1∥loc;

hence, ∥Ap∥loc ∼ ðp!Þd. This suggests that the optimal order
n at which to stop the adiabatic expansion, found by
εn∥An∥loc ¼ 1, is given by n ¼ c=

ffiffiffi
d

p
ε for some constant

c, and the resulting error term is then e−c=
ffiffi
d

p
ε. Although this

estimate may underestimate the diabatic term in general (it
does so in d ¼ 0), it does strongly suggest that in d > 1, the
one-body estimate is wrong. This dimension-dependent
scaling is the most striking manifestation of the novel
dressing construction that we describe in this Letter. The
scaling can be probed in cold atom experiments [59].
An interesting related point that is absent in the single-

body framework is that the diabatic term contains long-
range contributions, originating from entangled excitations
created during the driving. These excitations can propagate
for time of order ε−1 and hence introduce a correlation over
lengths of at most ε−1 in the dressed ground state ϕ, to be
contrasted with the static correlation length of order g−1 in
the gapped Ω; see Fig. 1.
Let us illustrate this divergent correlation length

in the case of the transverse-field Ising chain,
Hs ¼ −

P
L
i¼1 ðhsσzi þ σxi σ

x
iþ1Þ. We choose h → þ∞ for

large jsj, while h has a minimum h0 > 1. The system is
initially in the h ¼ ∞ ground state jΩ−∞i ¼ j↑…↑i,

PRL 119, 060201 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

11 AUGUST 2017

060201-4



and so is its final state to all orders, with corrections
beyond perturbation theory. When h ∼ h0 each mode
undergoes an avoided crossing with a gap given by
γ2k ¼ 4½h20 þ 1 − 2h0 cosðkÞ�, yielding a tunneling
probability pk given by the Landau-Zener formula. The
density of excitations above the final ground state in the
L → ∞-limit is thus given [60] by

ρðεÞ ¼ L−1
X
k

pk ≈
ffiffiffiffiffiffiffiffiffiffi
ε=h0

p
4

ffiffiffi
2

p
π
e−ð8π=εÞðh0−1Þ2 : ð17Þ

The correlations arising from the created entangled pairs of
excitations can be read from hσziσziþli − hσzi ihσziþli at time
t ¼ ∞, whose leading contribution is

L−2
X
k;q

pkpqeilðp−kÞ ≈ CρðεÞe−ðl2ε=16h0Þ:

As discussed above, this corresponds to a correlation length
of order ε−1=2 corresponding to dispersive free exciton pairs
over a time of order ε−1.
Conclusion.—We prove an adiabatic theorem appropriate

for extended quantum spin systems. The main idea is to
introduce a dressing operator U to describe the adiabatic
cloud and to look for a local generator A forU in the form of
an asymptotic expansion in powers of the adiabaticity
parameter ε. This yields also a local counterdiabatic driving
term. We show that the density of nonperturbative errors has
a nonstandard dimension-dependent behavior. In an exactly
solvable model we compute the spatial correlations of these
errors. We expect that the perturbation expansion will find
further applications in mathematical and theoretical physics
beyond the proof of Kubo’s formula that we presented here,
for example, in the recent exciting developments in the
adiabatic theory for periodically driven systems [61,62].
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