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We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local
alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at
the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the
polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to
structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the
system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase
synchronized microflocks with a controllable characteristic size proportional to the average single-particle
swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the
Vicsek model and establish a generic route to pattern formation in chiral active matter with possible
applications for understanding and designing rotating microflocks.
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Among the most remarkable features of active matter
systems is their ability to spontaneously form self-sustained
nonequilibrium structures, without requiring external driv-
ing. These structures range from motility-induced phase
separation of self-propelled particles into a dense and a
dilute phase [1,2] and clusters of self-limited size [3–7] in
isotropic active matter to long range ordered flocks and
traveling bands in 2D polar active matter [8–12]. Despite
their phenomenological diversity, most of these (and other)
activity-induced structures can be observed in a small class
of archetypical minimal models allowing us to explore their
universality. For linear self-propelled particles which
change their swimming direction only by diffusion (and
alignment interactions), the active Brownian particle model
and the Vicsek model have become standard models
representing isotropic and polar active matter.
Besides such linear swimmers, there is now a strong

interest in a new class of self-propelled particles which
change their direction of motion autonomously. This class
of chiral active matter includes a variety of biological circle
swimmers, such as E. coli, which swim circularly when
close to walls and interfaces [13–16], as well as sperm cells
[17,18], and magnetotactic bacteria in rotating external
fields [19,20]. Following the general principle that any
deviation between the self-propulsion direction of the
particle and its symmetry axis couples its translational
and rotational degrees of freedom, it has also been possible
to design synthetic circle swimmers; examples being
L-shaped self-phoretic swimmers [21,22] and actuated
colloids allowing us to design radius and frequency of
circular trajectories on demand. While these synthetic
examples have supported the recent boost of interest in
chiral active matter, as the recent reviews [23,24] reflect,

surprisingly little is known about their collective behavior
(exceptions exploring collective behavior are [25–27]).
Therefore, following the spirit of formulating minimal

models for the collective behavior of linear active matter,
here, we introduce the chiral active particlemodel (CAP) to
describe the collective behavior of polar circle swimmers.
The CAP model describes overdamped self-propelled
particles changing their direction autonomously with an
intrinsic rotation frequency, and due to local alignment
interactions between circle swimmers (which are typically
nonspherical). In the monochromatic case of identical circle
swimmers, one might expect that circular swimming has
little impact on the physics of the Vicsek model, as the
absence of inertia seems to guarantee invariance of the
system by global rotation of the reference frame—as for an
overdamped ideal gas in a rotating bucket, where global
rotations do not change the particle dynamics inside. This
viewpoint receives further support from the fact that the
flocking transition of Vicsek models proves invariant under
rotations, as we will show. Strikingly, however, as a distinct
active matter effect, this flocking transition induces long-
range polar order in 2D, which spontaneously breaks
rotational invariance. The consequence is that uniform
rotations, as a seemingly minor modification of the
Vicsek model, become nontrivial in this symmetry-broken
state and induce a new phase consisting of rotating microf-
locks. These microflocks emerge at a characteristic length
scale which can be qualitatively predicted at a mean-field
level and controlled via the swim speed and the rotational
frequency of the underlying circle swimmers. This allows us
to use rotations as a tool to design microflock patterns.
Besides fast rotations, slow ones also induce new

collective effects: they allow for large-scale aggregates
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of phase-locked circle swimmers which scale linearly with
system size and feature an enhanced polarization as
compared to uniform flocks in the Vicsek model.
Following their sizes and shapes, we call them macro-
droplets. Thus, contrasting the obvious viewpoint that
monofrequent rotations do not change the collective
behavior of linear swimmers significantly, the present work
shows that they generate a rich new route to pattern
formation. This route should be readily observable in
identical synthetic circle swimmers (L-shaped or actuated
colloids) or in magnetotactic bacteria in rotating external
magnetic fields, and could be useful, for example, to design
localized microflocks whose characteristic size can be
(dynamically) controlled in the laboratory (e.g., by chang-
ing the self-propulsion velocity or the frequency of the
applied field).
Besides this, our results may find further applications for

understanding pattern formation in 2D suspensions of
sperm cells [18] and driven protein filaments [26,28]
qualitatively matching the microflocks we observe. Note
that our results may qualitatively apply even to nonidentical
but synchronized biological swimmer ensembles [27].
The chiral active particle model.—To specify our

results, we now define the CAP as a rotating and smooth
variant of the Vicsek model in continuous time [10,29,30]:
it consists of N pointlike self-propelled particles with
positions ri and orientations piðtÞ ¼ ðcos θi; sin θiÞ which
interact via an aligning pair potential and change their
direction in response to a systematic rotational force,
according to

_ri ¼ vpi;

_θi ¼ ωþ K
πR2

θ

X
j∈∂i

sinðθj − θiÞ þ
ffiffiffiffiffiffiffiffi
2Dr

p
ηi; ð1Þ

Here, the sum runs over neighbors within a radius Rθ

around particle i, and ηiðtÞ is a unit-variance Gaussian
white noise with zero mean. In the noninteracting limit
(K ¼ 0), each particle performs an overdamped circular
Brownian motion as shown in Fig. 1 and statistically
characterized in [31]. To reduce the parameter space to
its essential dimensions, we choose space and time units as
Rθ and 1=Dr. The CAP model has four control parameters:
the particle density ρ0 ¼ NR2

θ=L
2, a Péclet number Per ¼

v=ðDrRθÞ measuring the persistence length in units
of the alignment interaction range, g ¼ K=ðπR2

θDrÞ, and
Ω ¼ ω=Dr, comparing alignment and rotational frequen-
cies with the rotational diffusion rate. Remarkably, the
phase diagram is determined predominantly by only two of
these parameters, gρ0 and Ω, as we discuss below.
Interesting phenomena occur for gf ≔ gρ0 > 2 and for
Ω ∼ 1 or Ω > 1. Hence, a sufficiently large number of
circle swimmers (N ∼ 103–104), sedimented on a quadratic
surface of linear size L ∼ 102–103 μm above the standard

flocking transition of the Vicsek model [32] should allow
us to explore our phase diagram: Rotating E:coli
(ω ∼ 0.1–1=s [15]; Dr ∼ 0.2=s − 1=s) lead to Ω ∼ 1,
whereas L-shaped swimmers (ω∼0.1�0.3=s; Dr∼6.10−4

[21]) allow us to explore the regime Ω ∼ 102 ≫ 1, and
magnetotactic bacteria in rotating fields should allow us to
tune Ω on demand.
Pattern formation.—We now simulate the collective

behavior of N identical circle swimmers in a quadratic
box with periodic boundary conditions (see [33] for
details). For Ω ¼ 0, we reproduce the phenomenology of
the Vicsek model [12,35–37]: a disordered homogeneous
phase occurs below the flocking threshold (g < gf),
whereas g≳ gf induces a global polarization with high
density bands coexisting with a disordered gas [Fig. 2(a)].
Stronger couplings eventually destabilize these bands and
induce homogeneous flocking. Now, choosing g > gf and
switching on slow rotations (Ω ¼ 0.2), we observe a
separation of circle swimmers into a polarly ordered and
almost spherical dense phase (macrodroplet) and an inco-
herent low-density gas, resembling the usual liquid-gas
demixing. This droplet rotates coherently but slower
than individual swimmers with a frequency Ω� < Ω [see
Figs. 1(c), 2(b), and Movie 1 in the Supplemental Material
(SM) [33]] and grows, at late times, linearly with the
system size [33], indicating phase separation. Tuning the
frequency to values Ω≳ 1 leads, strikingly, to a pattern of
dense clusters emerging with a characteristic (and system-
size independent) length scale [see Figs. 2(c)–2(h) and
Movie 3 [33]]. Within each cluster, particles synchronize
and form rotating microflocks: hence, we call the emerging
phase the rotating microflock pattern. This pattern resem-
bles vortex arrays observed in sperm cells and protein
filaments [18,28].
Hydrodynamic equations and enhanced flocking.—To

understand the emergence of patterns and their length

FIG. 1. Trajectory of an isolated linear [(a), Ω ¼ 0] and circle
swimmer [(b), Ω ¼ 3]. Trajectories of circle swimmers in the
macrodroplet [(c), gρ0 ¼ 2.8, Ω ¼ 0.2] and the microflock phase
[(d), gρ0 ¼ 2.8, Ω ¼ 3]. (e) and (f) are cartoons illustrating the
mechanism underlying macrodroplet and microflock formation:
for slow rotations, circle swimmers phase-lock and follow
circular orbits allowing for aligned configurations and the
formation of large rotating clusters (e), whereas fast rotations
frustrate the alignment interactions (f).
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scales, we derive a continuum theory for the CAP model in
the SM [33]. Following the approaches in [38,39], we find a
closed set of equations for the particle density ρðx; tÞ and
polarization density wðx; tÞ ¼ ðwx; wyÞ ¼ ρP [with Pðx; tÞ
being the polarization field] where jwj measures the local
degree of alignment and w=jwj the average swimming
direction

_ρ ¼ −Per∇ · w; ð2Þ

_w ¼ ðgρ − 2Þw
2
−
Per
2

∇ρþ Pe2r
2b

∇2w −
g2

b
jwj2w

þ gPer
4b

½5∇w2 − 10wð∇ · wÞ − 6ðw ·∇Þw�

þ Ωw⊥ þ Pe2rΩ
4b

∇2w⊥ −
g2Ω
2b

jwj2w⊥

−
gPerΩ
8b

½3∇⊥w2 − 6wð∇⊥ · wÞ − 10ðw · ∇⊥Þw�: ð3Þ

Here, b ¼ 2ð4þΩ2Þ, w⊥ ¼ ð−wy; wxÞ, and ∇⊥ ¼
ð−∂y; ∂xÞ. First, we note that the disordered uniform phase
D ðρ;wÞ ¼ ðρ0; 0Þ solves (3) with ρ0 being the particle
density. Linearizing (3) around phase D (SM [33]), unveils
an instability (flocking transition) gρ0 > 2, which is the
same as for linear swimmers (Ω ¼ 0) showing that the
emergence of long-range order is invariant to rotations. Our
simulations confirm this invariance (Fig. 3) [40]. Following
the flocking instability, the CAP approaches a rotating
uniform phase called the F phase, ðρ; jwj;w=jwjÞ ¼
(ρ0; w0; cosðΩ0tÞ; sinðΩ0tÞ), featuring long-range order

w0 ¼
1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgρ0 − 2Þð4þΩ2Þ

q
: ð4Þ

In this phase, a macroscopic fraction of circle swimmers
phase-synchronizes and rotates coherently with a frequency

Ω0 ¼ Ω½3
2
− ðgρ0=4Þ�. This frequency reduces to the single

particle frequency at the onset of flocking, but slows down
as gρ0 increases. Remarkably, (4) suggests that the polari-
zation increases with Ω, a phenomenon which we call
enhanced flocking and confirm numerically in Fig. 3 for
locally uniform macrodroplets (in [33] we also confirm
enhanced flocking for phase F alongside the predicted
slowdown of rotations). Physically, enhanced flocking
might be based on a decrease of the average time needed
for a diffusive rotating particle (which is not yet part of the
flock) to align its direction with the flock. That is, rotations
allow the flock to collect particles with random orientations
faster.
Microflock instability.—Phase F is stable only at very

large gρ0 ([33]) but features secondary instabilities creating
the patterns described above. To understand their emer-
gence, we now perform a linear stability analysis of phase
F. Here, the presence of long-range order in the base state
allows terms of order Ωw∇⊥w to crucially impact its
stability. First, considering the case Ω ¼ 0, we find an
oscillatory long wavelength instability along the polariza-
tion direction for 2 < gρ0 < 22=7 (and a stationary long
wavelength instability perpendicular to the flocking direc-
tion for 2 < gρ0 < 82=21). The oscillatory instability

FIG. 2. Simulation snapshots for N ¼ 32 000 particles with colors encoding particle orientations. [(a), Ω ¼ 0]: Traveling bands;
[(b), Ω ¼ 0.2 < 1]: rotating macrodroplet (phase separation) (c)–(h): Microflock pattern at gρ0 ¼ 2.8, Ω ¼ 3, and Per ¼ 0.2 (c),
Per ¼ 1.0 (d), and Per ¼ 2 (e), and at Per ¼ 0.2, Ω ¼ 3, and gρ0 ¼ 2.4 (f), 3.6 (g), and 6 (h). (i), (j): Microflock length scale l for
gρ0 ¼ 2.8; for Ω ¼ 3 as a function of Per (i), and for Per ¼ 0.2 as a function of Ω (j) for the system sizes shown in the key.

FIG. 3. Global polarization over gρ0 and Ω showing invariance
of the flocking transition against rotations (left) and enhanced
flocking (right) as predicted in the text.
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evokes moving density fluctuations only in the polarization
direction and is often associated with the emergence of
traveling bands in the Vicsek model [37,39]. In the CAP,
we also find oscillatory long wavelength instabilities, here,
producing moving density fluctuations both longitudinal
and perpendicular to the flocking direction which might be
responsible for the emergence of (coarsening) macrodrop-
lets [Fig. 2(b)].
Most strikingly, for larger Ω, our linear stability analysis

([33]) unveils a rotation-induced oscillatory short wave-
length instability which generates pattern formation in the
CAP and explains the observation of microflocks with a
characteristic size [Fig. (2)]; hence, we call it the microf-
lock instability. Close to gρ0 ¼ 2, the size of emerging
microflocks scales as (see [33])

l ≈
πPer
2Ω2

j4ð2 − gρ0Þ þ Ω2ð12 − gρ0Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgρ0 − 2Þð4þ Ω2Þ

p : ð5Þ

Thus, microflocks grow linearly with Per and typically
decrease with Ω. If Ω ≫ 1, (5) yields l ∝ v=ω, predicting
microflock sizes proportional to the (average) radius of a
single circle swimmer. Our simulations confirm these
scalings [Figs. 2(i) and 2(j)]: Specifically, defining the
length scale l of a numerically observed structure as the
value where the pair correlation function GðlÞ ¼ 1 leads to
Fig. 2: panel 2(i) confirms the l ∝ Per prediction and 2(j)
shows a decrease of l with increasing Ω, revealing that the
microflock size can be tuned by the microscopic parameters
in our model [41]. In line with (5), we also find that l only
depends on gρ0, whereas the macrodroplet size depends on
g and ρ0 individually [33]. Also, in contrast to macro-
droplets which saturate relatively quickly to sizes compa-
rable to N, microflocks grow slowly and do not phase-
separate macroscopically (at least) on experimentally
relevant timescales [33].
What is the physical mechanism leading to the rotating

droplet phase and the microflock pattern? While circle
swimmers are effectively independent of each other at
large distances in phase D, for gρ0 > 2 they have to satisfy
the rotations while being aligned on average. If inter-
actions dominate (gρ0=Ω ≫ 1), circle swimmers can phase
lock before they rotate much and follow almost ideal
circles [Fig. 1(c)]. Here, they are parallel to each other all
along their circular orbits [Fig. 1(e)] and form a macro-
scopic rotating droplet [Fig. 2(b)]. In this state, interactions
support circular motion: phase locking leads to an essen-
tially stiffly rotating many-particle object that experiences
an “average” noise, inducing only weak deviations from
circular motion [Fig. 1(c)]. Conversely, when rotations
dominate (gρ0=Ω < 1), the phase locking timescale
becomes comparable to the rotational timescale. This
results in phase shifts among adjacent circle swimmers
that frustrate, for swimmers on circular orbits, the align-
ment interaction [Fig. 1(f)]. The frustration, in turn,

destroys circular orbits and makes large droplets of
phase-locked swimmers impossible. As a result, the
droplet phase breaks down opening a route to pattern
formation: the resulting microflock phase can be seen as an
attempt of the CAP to satisfy alignment interactions in
the presence of rotations but in absence of phase-locking,
at least on average [see Fig. 1(d) for a typical trajectory]:
rotating around a common center allows particles to
avoid close-to-orthogonal configurations such as the one
shown in Fig. 1(f) even in the presence of small phase
shifts.
Finally, we summarize our results from linear stability

analysis and simulations in an instability or phase diagram,
Fig. 4. Although the CAP model depends on four dimen-
sionless parameters, we show in the SM [33] that the linear
stability of the uniform phase is fully characterized by gρ0
and Ω. In Fig. 4, the red shaded areas lead to microflock
patterns while the blue ones represent the rotating macro-
droplet phase. Where both regimes overlap (Ω ∼ 1 and
gρ0 ≳ 10=3), short and long wavelength instabilities
perpendicular to the flocking direction coexist. Generally,
we also find a coexisting long wavelength instability in the
polarization direction, which is not shown in Fig. 4 but is
detailed in the SM [33]. Often, the coexisting long and short
wavelength instabilities are separated by a band of stable
wave numbers (Fig. 1 in [33]), suggesting that, depending
on initial conditions, phase F proceeds either towards a
microflock pattern or towards a macrodroplet. This suggests
hysteresis in the CAP: we confirm this in Movie 5 [33],
showing phase separation for smallΩ persisting even after a
quench to large Ω values, which normally lead to the

FIG. 4. Nonequilibrium phase diagram. The solid red line
(obtained by linear stability analysis) and red symbols (simu-
lations; bars represent numerical uncertainty) separate the macro-
droplet phase (left, blue domain) induced by a long wavelength
instability (LWI) from the microflock phase (pink domain)
following an oscillatory, short wavelength instability (SWI)
[33]. Overlaying colors (LWIþ SWI) indicate phase coexistence.
The light gray domain (bottom) represents stability of the
disordered uniform phase. Black symbols show the location of
the flocking transition from simulations. Filled symbols show
parameters of Fig. 2: (a), (b) blue squares; (c)–(e) brown dot,
(f)–(g) gray triangles.
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microflock pattern, when our system is initialized in
phase F.
Conclusions.—Chiral active matter can feature long-

range polar order in 2D (as polar active matter) which
violates rotational invariance even for monofrequent rota-
tions and induces new patterns: Slow rotations lead to
coarsening macrodroplets featuring an enhanced polariza-
tion compared to the Vicsek model, whereas faster rotations
induce microflock patterns with a characteristic size which
can be tuned via the swimming speed and the rotation
frequency of the underlying circle swimmers. This allows us
to use rotations as a design principle for microflock patterns.
While microflocks and macrodroplets show various

distinguishing features, including the instability in the
underlying mean-field equations leading to their emergence
(short- vs long-wavelength instability), the Ω- and ρ0-
dependence of their sizes [Fig. 2(j); [33]], the shape of the
contained trajectories (Fig. 1), and the temporal growth-law
of the largest structure ([33]), the present work does not
definitely commit regarding whether or not the microflock
pattern slowly phase-separates macroscopically but invites
further studies to fully characterize the nature of the
transition between macrodroplets and microflocks.
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