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Current theories of superfluidity are based on the idea of a coherent quantum state with topologically
protected quantized circulation. When this topological protection is absent, as in the case of 3He-A, the
coherent quantum state no longer supports persistent superflow. Here, we argue that the loss of topological
protection in a superconductor gives rise to an insulating ground state. We specifically introduce the
concept of a Skyrme insulator to describe the coherent dielectric state that results from the topological
failure of superflow carried by a complex-vector order parameter. We apply this idea to the case of SmB6,
arguing that the observation of a diamagnetic Fermi surface within an insulating bulk can be understood as
a realization of this state. Our theory enables us to understand the linear specific heat of SmB6 in terms of a
neutral Majorana Fermi sea and leads us to predict that in low fields of order a Gauss, SmB6 will develop a
Meissner effect.
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While it is widely understood that superfluids and
superconductors carry persistent “supercurrents” associated
with the rigidity of the broken symmetry condensate [1], it
is less commonly appreciated that the remarkable persist-
ence of supercurrents has its origins in topology. The order
parameter of a conventional superfluid or superconductor
lies on a circular manifold (S1), and the topologically stable
winding number of the order parameter, like a string
wrapped multiple times around a rod, protects a circulating
superflow. However, if the order parameter lies on a higher-
dimensional manifold, such as the surface of a sphere (S2),
then the winding has no topological protection and putative
supercurrents relax their energy through a continuous
reduction of the winding number, leading to dissipation
(Fig. 1). This topological failure of superfluidity is
observed in the A phase of 3He, which exhibits dissipation
[2–5]. Similar behavior has also been observed in spinor
Bose gases, where the decay of Rabi oscillations between
two condensates reveals the unraveling superflow [6].
Here, we propose an extension of this concept to

superconductors, arguing that when a charge condensate
fails to support a topologically stable circulation, the
resulting medium forms a novel dielectric. Though our
arguments enjoy general application, they are specifically
motivated by the Kondo insulator SmB6. While transport
[7–9] and photoemission [10–14] measurements demon-
strate that SmB6 is an insulator with topological surface
states, the observation of bulk quantum oscillations [15,16],
linear specific heat, anomalous thermal, and optical con-
ductivity [17–20] have raised the fascinating possibility of
a “neutral” Fermi surface in the bulk, which paradoxically,
exhibits Landau quantization. Landau quantization is

normally understood as a semiclassical quantization
of cyclotron motion [21]. Rather general arguments tell
us that gauge invariance makes the Coulomb and Lorentz
forces inseparable: particles interact with the vector
potential A via the gauge invariant kinetic momentum
π ¼ ðp − eAÞ; the corresponding equation of motion
dπ=dt ¼ qðEþ v ×BÞ necessarily contains both E and
B as respective temporal and spatial gradients of the
underlying vector potential. Thus, quasiparticles, which
develop a Landau quantization in response to the vector
potential, should also respond to its time derivative, the
electric field E≡ −∂A=∂t, forming a metal. In other
words, unless the bulk somehow breaks gauge invariance,
quantized cyclotron motion is incompatible with insulating
behavior. This reasoning motivates the hypothesis that
SmB6 is a failed superconductor, formed from a topological
breakdown of an underlying condensate.
General arguments tell us that the condition for the

stability of a superfluid is determined by the order

FIG. 1. Illustration of topological stability. The stability of a
supercurrent is analogous to topological stability of a string
wrapped around a surface. (a) The winding number of a string
wrapped around a rod is topologically stable, and it can not be
unraveled (b) A string wrapped around the equator of a sphere
unravels due to a lack of topological stability.
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parameter manifold G=H, formed between the symmetry
group G of the Hamiltonian and the invariant subgroup
H of the order parameter. The absence of coherent
bulk superflow requires that the first homotopy class
π1ðG=HÞ ≠ Z is sparse, lacking the infinite set of integers,
which protect macroscopic winding of the phase. This
means that G=H is a higher-dimensional non-Abelian
manifold, most naturally formed through the condensation
of bosons or Cooper pairs with angular momentum. Thus,
in spinor Bose gases, G=H is an SU(2) manifold, with
π1½SUð2Þ� ¼ 0: in this case, the observed decay of vorticity
gives rise to Rabi oscillations [6]. Similarly, in superfluid
3He-A, an SO(3) manifold [4,5], for which, π1½SOð3Þ�¼Z2,
allows a single vortex but no macroscopic circulation in
the bulk.
In the solid state, the condition for a topological failure

of superconductivity is complicated by crystal anisotropy.
If the condensate carries orbital angular momentum, it will
tend to lock to the lattice, collapsing the manifold back to
Uð1Þ. On the contrary, if the order parameter has s-wave
symmetry, its Uð1Þ manifold allows stable vortices.
There are two ways around this no-go argument. The

first is if there is an additional “isospin” symmetry of the
order parameter. For example, the half-filled attractive
Hubbard model [22], which forms a “supersolid” ground
state with a perfect spherical (S2) manifold of degenerate
charge density and superconducting states, with pure
superconductivity along the equator and a pure density
wave at the pole. In this special case, supercurrents can
always decay into a density wave.
A second route is suggested by crystal field theory,

which allows the restoration of crystalline isotropy for low
spin objects, such as a spin 1=2 ferromagnet in a cubic
crystal. Were an analogous s-wave spin-triplet condensate
to form, isotropy would be assured. Rather general argu-
ments suggest that the way to achieve an s-wave spin triplet
is through the development of odd-frequency pairing. The
Gorkov function of a triplet condensate has the form

dð1 − 2Þ ¼ hψαð1Þðiσ2σ⃗Þαβψβð2Þi; ð1Þ

where i≡ ðx⃗i; tiÞ; ði ¼ 1; 2Þ are the space-time coordinates
of the electrons. Exchange statistics enforce the pair wave
function dðXÞ ¼ −dð−XÞ to be odd under particle
exchange. Conventionally, dðx⃗; tÞ ¼ −dð−x⃗; tÞ is an odd
function of position, leading to odd-angular momentum
pairs. By contrast, an s-wave triplet is even in space and
must, therefore, be odd in time dðjxj; tÞ ¼ −dðjxj;−tÞ, as
first proposed by Berezinsky [23–28]. Odd-frequency triplet
pairing has been experimentally established as a proximity
effect in hybrid superconductor-ferromagnetic tunnel junc-
tions [27,28], but for spontaneous odd-frequency pairing, we
need to identify an equal-time order parameter. From [26]
the time derivative of the Gorkov function is obtained from
the Heisenberg equation of motion

Ψð1Þ ¼ ∂dð1 − 2Þ
∂t1

����
1¼2

¼ h½ψαð1Þ; H�ðσ2σ⃗Þαβψβð1Þi: ð2Þ

The specific form of this composite operator depends on the
microscopic physics, but the important point is that its equal-
time expectation value defines a complex-vector order
parameter Ψ ¼ Ψ1 þ iΨ2.
The case of SmB6 motivates us to examine a concrete

example of this idea. We consider a Kondo lattice of local
moments (Sj) interacting with electrons via an exchange
interaction of form H ¼ J

P
jSj · ψ†ðxjÞσ⃗ψðxjÞ, for which,

½ψαðxÞ; H� ¼ J½SðxÞ · σ⃗�αγψγðxÞ, giving rise to composite-
pair order parameter between local moments and s-wave
pairs [26,29]

ΨðxÞ ∝ hψ↑ðxÞψ↓ðxÞSðxÞi: ð3Þ
In microscopic theory, it is actually more natural to
consider an antiferromagnetic version of composite order,
formed between the staggered magnetization and the pair
density ΨðxÞ ¼ ð−1Þiþjþkhψ↑ðxÞψ↓ðxÞSðxÞi [25,29–31].
We now consider a Ginzburg Landau free energy for an

s-wave triplet condensate. The absence of orbital compo-
nents to the order parameter considerably simpifies the
Ginzburg Landau free energy density [32,33]

f¼ 1

2m
jð−iℏ∇−2eAÞΨj2þajΨj2þbjΨ� ·Ψj2þdjΨ ·Ψj2;

ð4Þ

Provided d > 0, the condensate energy is minimized when
Ψ ·Ψ ¼ 0, and the real and imaginary parts of the order
parameter are orthogonal Ψ ¼ jΨjðl̂þ im̂Þ. The s-wave
triplet thus defines a triad ðl̂; m̂; n̂Þ of orthogonal vectors,
with principal axis n̂ ¼ l̂ × m̂.
Eliminating the amplitude degrees of freedom [25,

32–34], the long-wavelength action has the form

F ¼
Z

d4x

�
ρ⊥
2
ð∂μn̂Þ2 þ

ρs
2
ðωμ − qAμÞ2 þ

F2
μν

16π

�
: ð5Þ

Here, q ¼ 2e=ℏ, and we adopt the relativistic limit of the
action to succinctly include both electric and magnetic
fields [38], using the Minkowski signature (x2μ ≡ x⃗2 − x20,
with c ¼ 1) and denoting Aμ ¼ ð−V;AÞ as the four-
component vector potential. The first two terms describe
the condensate action, where ωμ ¼ m̂ · ∂μ l̂ is the rate of
precession of the order parameter about the n̂ axis. ρs is the
nominal superfluid stiffness, while ρ⊥ determines the
magnetic rigidity. The last term is the field energy, where
Fμν ¼ ∂μAν − ∂νAμ. The stiffness coefficients ρ⊥, ρs are
obtained by integrating out the thermal and quantum
fluctuations of the microscopic degrees of freedom.
Under the gauge transformation ðl̂þ im̂Þ → eiϕðl̂þ im̂Þ
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and qAμ → qAμ þ ∂μϕ, the vectors l̂ and m̂ rotate through
an angle ϕ about the n̂ axis, so the angular gradient
transforms as ωμ→ωμþ∂μϕ, and thus, the currents Jμ ¼
qρsðωμ − qAμÞ and free energy are gauge invariant. The
equivalence of electron gauge transformations and spin-
rotation means that gauge transformations are entirely
contained within the SO(3) manifold of the order parameter.
To analyze how the superflow is destablized, we examine

the screening of electromagnetic fields. From Ampère’s
equation 4πJμ ¼ ∂νFμν, we observe that if ∂νFμν ¼ 0,
corresponding to uniform internal fields, then the super-
current vanishes Jμ ¼ qρsðωμ − qAμÞ ¼ 0. In a supercon-
ductor, this condition is only achieved by the complete
exclusion of fields, but here, the texture of the composite
order parameter is able to continually adjust with the vector
potential so thatωμ ¼ qAμ, enabling the current to vanish. To
examine this further, we take the curl of Ampère’s equation,

ð1 − λ2L∂2ÞFμν ¼ q−1Ωμν; ð6Þ
where λL ¼ ð4πq2ρsÞ−1=2 is the London penetration depth.
This modified London equation contains the additional term
Ωμν ¼ ∂μων − ∂νωμ, which is the curl of the gradient of the
order parameter. In a conventional superconductor,ωμ ¼ ∂μϕ
is the gradient of the superconducting phase so Ωμν ¼ 0
vanishes, causing fields to be expelled. However, the quantity
Ωμν is finite and can be written in the form Ωμν ¼
n̂ · ð∂νn̂ × ∂μn̂Þ, which is the Mermin-Ho relation [34] for
the Skyrmion density of the n̂ field. From (6), we see that on
scales long compared with the penetration depth, where
gradients of the field can be neglected, the average Skyrmion
density locks to the average external fieldΩμν ¼ qFμν,where
the lines denote a coarse-grained average. This relation
expresses the screening of supercurrents by charged
Skyrmions; it also holds in nonrelativistic versions of this
theory [38]. Moreover, phase rotations around the n̂ axis are
now absorbed into the electromagnetic field (Anderson-
Higg’s effect), leaving behind a residual order parameter
manifold with SOð3Þ=Uð1Þ≡ S2 symmetry. While the
homotopy analysis yields no stable vortices π1ðS2Þ ¼ 0, it
does allow for the topologically stable Skyrmion solutions
π2ðS2Þ ¼ Z that screen the superflow and allow penetration
of electric and magnetic fields. We shall actually consider
lines of Skyrmion, formed by stacking two-dimensional
Skyrmion configurations, similar to vortex lines, in super-
conductors. We call the corresponding dielectric a “Skyrme
insulator.”
Written in nonrelativistic language, the equations relat-

ing the Skyrmion density to the penetrating fields are

1

2π
n̂ · ð∂in̂ × ∂jn̂Þ ¼ −ϵijk

�
Bk

Φ0

�

1

2π
n̂ · ð∂in̂ × ∂tn̂Þ ¼

2e
h
Ei; ð7Þ

where Φ0 ¼ 2π=q ¼ h=2e is the flux quantum, and the
overline denotes a coarse-grained average over space or

time. The first term in (7) relates the areal density of
Skyrmions to the magnetic field, allowing a magnetic field
to penetrate with a density of one flux quantum per half
Skyrmion. The second term in (7) describes the unraveling
of supercurrents due to phase slippage [2], created by
domain wall or instanton configurations of the order
parameter. The integral of this term over a time t and length
L of the wire counts the number of domain walls N ¼
−ð2e=hÞðV2 − V1Þt crossing the wire in time t in the
presence of a finite voltage drop V2 − V1. This voltage
generation mechanism is similar to the development of
insulating behavior in disordered two-dimensional super-
conductors [39]. We conclude that the failure of the super-
conductivity does not reinstate a metal, which would screen
out electric fields, but transforms it into a dielectric into
which both electric and magnetic fields freely penetrate.
Unlike vortices, Skyrmions are coreless with short-range

interactions, so we expect them to form an unpinned liquid,
analogous to the vortex liquid of type II superconductors,
which restores the broken Uð1Þ symmetry on macroscopic
scales. How then, would we distinguish a Skyrme insulator
from a more conventional dielectric? Since the density of
(half) Skyrmions ns ¼ B=Φ0 is proportional to a magnetic
field, one signature of a Skyrmion liquid is a thermal
conductivity κ ∝ H proportional to the applied fieldH. In a
Drude model, the drift velocity vd ¼ μð−∇TÞ is propor-
tional to the temperature gradient and the Skyrmion
mobility μ. If Q is the heat content per unit length, then
κ ¼ QμnS so that κ ¼ ðμQ=Φ0ÞH is proportional to the
applied field.
A further consequence is the development of a low-field

Meissner phase. In a fixed external magnetic field H, we
consider the Gibb’s free energy G ¼ F −

R
d3xH ·BðxÞ=

ð4πÞ. Taking the fieldBz ¼ nSðxÞΦ0 to lie in the z direction,
where nS ¼ ð1=2πÞΩ12 is the areal Skyrmion density,

G ¼
Z

d3x

�
ρ⊥
2
ð∂μnÞ2 þ

½H −Φ0nSðxÞ�2
8π

−
H2

8π

�
: ð8Þ

This corresponds to an Oð3Þ sigma model in which the
Skyrmions have a finite chemical potential μS ¼ Φ0H=4π
per unit length. Suppose the corresponding energy of a
Skyrmion is ϵS=a per unit length, where a is the lattice
spacing; then providing that H < Hc ¼ 4πϵS=Φ0a, the
Skyrmion energy will exceed the chemical potential, and
they will be excluded from the fluid. In SI units, μ0Hc ¼
ð4=137ÞðVS=acÞ; where we have replaced ðe2=ℏcÞ ¼
1=137 and ϵS ¼ eVS. Below this field, Skyrmions and
field lines will be expelled, so the material will exhibit a
Meissner effect [Fig. 2(b)].
We now discuss the possible microscopic origin of this

order and its possible application to SmB6. Various
anomalous aspects of insulating SmB6 can be speculatively
associated with the properties of a Skyrme insulator. The
recent observation of an unusual thermal conductivity in
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insulating SmB6 that is linear in field κ ∝ H [19] is most
naturally interpreted as a kind of flux liquid expected in
such a phase, a hypothesis that could be checked by
confirming if the anomalous thermal conductivity lies
perpendicular to the field direction.
A second test of this hypothesis is the magnetic

susceptibility. In a heavy fermion compound, the order
parameter stiffness ρ is set by the Kondo temperature TK ,
ρ ∼ kBTK=a [25], where a is the lattice spacing, so the
energy of a Skyrmion is approximately kBTK per unit
lattice spacing a, and eVK ∼ kBTK . For SmB6, we estimate
VK ¼ 1 meV, and with a ¼ 10−9 m, we obtain μ0Hc ∼
10−4 T or 1 Gauss, comparable with Earth’s magnetic field.
In a magnetically screened (μ− metal) environment, we
expect SmB6 to become fully diamagnetic, with magnetic
susceptibililty χ ¼ −1=4π.
A microscopic model for composite pairing in a Kondo

lattice was studied by Coleman, Miranda, and Tsvelik
[25,40] (CMT) and recently revisited by Baskaran [41].
This model allows us to pursue the microscopic conse-
quences of the failed-superconductivity hypothesis. In a
conventional Kondo lattice, the local moments fractionalize
into charged Dirac fermions; the CMT model considers an
alternative fractionalization into Majorana fermions. In the
corresponding mean-field theory, spin 1=2 local moments
S are represented as a bilinear S ¼ −ði=2Þη̂ × η̂, where
η̂ ¼ ðη̂x; η̂y; η̂zÞ is a triplet of Majorana fermions. In this
representation, the Kondo interaction factorizes as follows:

HK½i� ¼ JKðψ̂†
iασαβψ̂ iβÞ · Si

→ ½ψ̂†
iαðσαβ · η̂iÞViβ þ H:c:� þ V†

iVi=JK; ð9Þ

where JK is the Kondo interaction strength, c†iγ creates a
conduction electron, and ½Vi�β ¼ −ðJK=2Þhðσβγ · ηiÞciγi is
a two-component spinor. Vj determines the composite

order via the equation Ψ⃗ðxÞ ¼ VTiσ2σ⃗V. We have extended
the model to include spin-orbit coupling by incorporating a
p-wave form factor into the definition of the conduction
Wannier states ci, derived from the angular momentum
difference jΔlj ¼ 1 between the heavy f and light d
electrons [34,42]. Our mean-field calculations confirm
that even in the presence of the spin-orbit coupling, the

ground-state energy is independent of the orientation of the

composite order parameter Ψ⃗, so the system remains
isotropic [34].
In the CMT model, the conduction electrons, represented

by four degenerate Majorana bands, hybridize with the three
neutral Majorana fermions, gapping all but one of them,
which is left behind to form a gapless Majorana Fermi sea
[Fig 2(a)]. This unique feature provides an appealing
explanation of the robust linear specific heat Cv ¼ γT,
observed in this material. The neutrality of the Majorana
Fermi sea strictly eliminates the dc conductivity, but the
current and spin matrix elements are proportional to
energy, leading to an ac conductivity of the form
Re½σðωÞ� ¼ ½σ0=ð1þ ω2τ2Þ�ω2, where τ is the relaxation
rate. The analogous matrix element effect also suppresses the
Koringa spin relaxation rate, giving rise a T3 NMR relax-
ation rate [40]. When we include the spin-orbit coupling, we
find that an additional topological Majorana surface state
develops, which is protected by the crystal mirror symmetry
and decouples from the gapless bulk band [34]. Thus, the
insulating state retains some of the surface conductivity of a
topological Kondo insulator [7,43].
Perhaps the most puzzling aspect of SmB6 is the reported

observation of 3D bulk quantum oscillations. An approxi-
mate treatment of the effect of a magnetic field on the
Majorana Fermi surface can be made by initially ignoring
the Skyrmion fluid background. The dispersion of the
Majorana band in a field can then be calculated by projecting
the Hamiltonian into the low-lying Majorana band.

ϵMk;A ¼ hϕM
k jHðk;AÞjϕM

k i ¼
1

2
ðϵek−eA þ ϵhkþeAÞ; ð10Þ

where ϵek−eA and ϵhkþeA are the dispersion for electrons
and holes. Although the scattering off the triplet condensate
mixes the electron and hole components of the field,
giving rise to neutral quasiparticles for which current operator
Jα ¼ ∂ϵMk;A=∂AαjA¼0 ¼ 0 vanishes, this cancellation does
not extend to the second derivative of the energy
∂2ϵMk;A=∂Aα

2jA¼0 ≠ 0, which is responsible for the diamag-
netic response. This is a consequence of the broken gauge-
invariant environment, provided by the Skyrme insulator. In
Fig. 2(c), we show the density of states of the Majorana band

Gapless
Majorana band

k-eA(a) (b) (c)

FIG. 2. (a) Hybridization of 3 localized Majorana fermions per spin with 4 Majorana fermions of the conduction band leads to one
gapless Majorana Fermi surface. (b) Magnetic field phase diagram of a Skyrme insulator. (c) Landau quantization of the projected
Majorana Fermi surface.
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in a magnetic field, demonstrating Landau quantization with
broadened Landau levels. Since quantum oscillations origi-
nate from the discretization of the density of states into
Landau levels, we anticipate that a Majorana Fermi surface
does give rise to quantum oscillations. Moreover, since the
Majorana Fermi surface originates predominantly from the
conduction electron band, it has a small effective mass, in
accordance with experiments [15,16].
We note that triplet odd-frequency pairing is expected to

be highly prone to disorder. Weakly disordered samples
may revert to a topological Kondo insulating phase in a
majority of the sample, accounting for the marked sample
dependence. Nevertheless, we expect that patches of failed
superconductivity will still lead to enhanced diamagnetism
in a screened environment.
Our results also set the stage for a broader consideration of

failed superconductivity in other strongly correlated materi-
als. There are several known Kondo insulators with marked
linear specific heat coefficients, including Ce3Bi4Pt3 [44],
CeRu4Sn6 [45], and CeOs4As12 [46], which might fall into
this class. We end by noting that Skyrme insulators may also
be relevant in an astrophysical context, such as color
superconductivity in white dwarf or neutron stars [47,48].
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Note added.—Recently, two new theories for SmB6 [49,50]
have appeared that address similar issues as a consequence
of gapless exciton formation.
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