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In the presence of Rashba spin-orbit coupling, a magnetic field can drive a proximitized nanowire into a
topological superconducting phase [R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,
077001 (2010). and Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).]. We study
the transport properties of such nanowires in the Coulomb blockade regime. The associated with
topological superconductivity Majorana modes significantly modify transport and lead to single-electron
coherent transmission through the nanowire—a nonlocal signature of topological superconductivity. In this
Letter, we focus on the case of strong hybridization of the Majorana modes with normal leads. The induced
by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading
to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We
evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients,
and the geometric capacitance of and the induced superconducting gap in the nanowire.
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Topological superconductors provide a promising plat-
form for fault-tolerant quantum computation [1–6]. These
exotic electronic phases of matter are predicted to host
defects binding Majorana zero-energy modes which obey
non-Abelian braiding statistics [7–9]. Theory predicts that
Majorana zero modes may be realized at the ends of
proximitized nanowires [10–12], and there is mounting
experimental evidence for their existence in these systems
[13–22].
Most of the proposals for Majorana-based topological

quantum computation involve mesoscopic islands with a
sizable charging energy which contain two or more
Majorana modes (Majorana islands) [23–31]. Therefore,
it is important to understand the interplay of topological
degrees of freedom and charging energy of these islands.
Another motivation comes from the recent experiment by
Albrecht et al. [20] investigating the dependence of two-
terminal conductance through a Majorana island in the
Coulomb blockade regime; see Fig. 1(a) for the device
layout. The existing theory [32,33] allows one to evaluate
the conductance of a Majorana island in the weak tunneling
regime gi ≪ 1 using resonant level approximation (here, gi
is the dimensionless normal-state conductance of the ith
junction Gi ¼ giG0, and G0 ¼ e2=h is the conductance
quantum for spin-polarized electrons). In that approxima-
tion, only the resonant level comprised of the two degen-
erate ground states of the island is involved in the formation
of narrow Coulomb blockade conductance peaks; see
Fig. 1(b).
The resonant-level approximation, however, is inappli-

cable to the strong tunneling regime, corresponding to one
or both junctions approaching the reflectionless limit (i.e.,
1 − gi ≪ 1). The width of the broadened resonant level

then becomes comparable to the topological gap ΔP. Under
this condition, the quasicontinuum of excited states with
energies above ΔP also contributes to the electron transport

FIG. 1. Panel (a): Schematic plot of the device. Panel (b):
Conductance G as a function of the dimensionless gate voltage
N g. In a symmetric device g1 ¼ g2 ≡ g, conductance reaches G0.
Solid(black)curve:Coulombblockadepeakatg ≪ 1 is aLorentzian
[33]ofwidthgivenbyEq. (23).Dashedandsolid (red)curve:GðN gÞ
at intermediate values of g such that ΔP=EC ≪ 1 − g ≪ 1; see
Eq. (21) for thewidth of themaximumandEq. (22) for the crossover
to the weak-tunneling limit. Dot-dashed (blue) curve: GðN gÞ of a
symmetric device in the strong tunneling limit, ECð1 − gÞ ≪ ΔP.
Conductance approaches the unitary limit, exhibiting weak
N g-dependent oscillations; see Eq. (20).
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across the island. The problem at hand is rather nontrivial.
A similar setting in the absence of superconductivity and in
the limit of zero spacing between the levels of quasicontin-
uum was investigated in Ref. [34]; in a symmetric device
(g1 ¼ g2), the maximum conductance reaches only half
of the conductance quantum G0, and the width of the
Coulomb blockade peak scales proportionally to temper-
ature T. Below, we demonstrate that, on the contrary,
the maximum conductance through a Majorana island
(ΔP ≠ 0) equals G0. Thus, upon lowering the temperature
below ΔP, the maximum two-terminal conductance should
increase. We also show that the superconductivity modifies
the off-peak conductance, which remains finite in the limit
T → 0. Therefore, the two-terminal conductance GðN gÞ ¼
GðN g; T → 0Þ through a Majorana island varies smoothly
with the dimensionless gate voltage N g. In this Letter,
we study the evolution of the GðN gÞ function with the
conductances gi and ratio ΔP=EC.
The effective model for the proximitized nanowires in

the experiment [20] has the following key ingredients:
Rashba spin-orbit coupling, Zeeman splitting, and
proximity-induced pairing due to a nearby s-wave super-
conductor. In the appropriate parameter regime [10,11],
applied magnetic field can drive the system into the
topological state which is equivalent to a spinless p-wave
superconductor supporting Majorana zero-energy modes
[35]. In order to probe the transport properties of such a
state, proximitized nanowires in Ref. [20] were coupled to
normal leads via gate-tunable single-channel contacts;
see Fig. 1(a). If the coupling is weak, electron transport
at the charge degeneracy point occurs via a resonance
between the two ground states differing by the charge
parity. Upon “opening” the contacts, the width of the
resonance increases and may become comparable to the
excitations gap in the proximitized wire. In the strong
tunneling regime (i.e., weak reflection at the contacts), the
description based solely on the ground-state resonance
[32,33] is no longer valid. Henceforth, we focus on the
strong tunneling regime. In this case, it is convenient to use
the bosonization technique [36–38], which allows one to
take into account the collective charge fluctuations and
superconducting pairing nonperturbatively. Weak reflection
at the junctions can be included then using perturbation
theory. The effective model for a proximitized nanowire in
the topological regime in the presence of Coulomb block-
ade can be written as

H ¼ HNW þHC þHP þHB; ð1Þ

HNW ¼ v
2π

Z
∞

−∞
dx½ð∂xθÞ2 þ ð∂xϕÞ2�; ð2Þ

HC ¼ ECðN −N gÞ2 ¼ EC

�
ϕðx2Þ − ϕðx1Þ

π
−N g

�
2

; ð3Þ

HP ¼ −
ΔPD
2πv

Z
x2

x1

dx cos 2θ; ð4Þ

HB ¼ −
X
i¼1;2

Dri cos 2ϕðxiÞ: ð5Þ

Here, v, ΔP, and D are the Fermi velocity in the nanowire,
induced superconducting gap, and UV cutoff energy,
respectively. Charging energy HC depends on the charge
transferred into the Majorana island via the two junctions,
N ¼ ½ϕðx2Þ − ϕðx1Þ�=π, with the bare charging energy
EC ¼ e2=2CΣ being determined by the geometrical capaci-
tance of the proximitized nanowire CΣ (including its
superconducting shell). The barriers at x1;2 are described
by the reflection amplitudes r1;2, respectively. Here, we
implicitly assume that the superconducting shell renorm-
alizes level spacing in the nanowire so that the spacing
becomes negligibly small. In this respect, our model is
similar to the one of Refs. [34,39]. The term HP accounts
for the superconducting proximity effect.
Let us now consider the case EC ≫ ΔP [40] and

r1;2 ≪ 1. In this limit, term HC of Eq. (3) pins the mode
ϕðx2Þ − ϕðx1Þ responsible for changing the charge of the
island. Integrating out this massive mode, one obtains an
effective boundary Hamiltonian [39] valid in energy band
E ≪ EC,

HB¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ECD

p
rðN gÞcos ½ϕðx2Þþϕðx1Þ−αðN gÞ�: ð6Þ

Here, αðN gÞ is an unimportant phase, parameter rðN gÞ is

rðN gÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22þr21þ2r2r1cosð2πN gÞ

q
sgnðcosπN gÞ; ð7Þ

c0 ¼ eC=2π3, and C ¼ 0.5772 is Euler’s constant. The
coupling rðN gÞ is relevant and grows under the renorm-
alization group (RG) procedure according to dr=dl ¼ r=2
until either the running cutoff D reaches ΔP or the
boundary perturbation HB reaches the strong-coupling
limit HB ∼D. The latter occurs at D ∼Dc defined as

Dc ∼ Γ0ðN gÞ ¼
2eC

π2
ECr2ðN gÞ; ð8Þ

where we chose the numerical coefficient in accordance
with Ref. [34]. The linear conductance strongly depends on
the gate voltage as long as Γ0ðN gÞ ≫ ΔP. In the opposite
limit ΔP ≫ Γ0ðN gÞ, conductance only weakly depends on
N g and approaches the unitary limit.
We start by considering the limit Γ0ðN gÞ ≫ ΔP, which

(at sufficiently large r1 and r2) is realized far away from the
charge degeneracy points. Upon reducing the bandwidth D
in the course of RG flow to D ∼Dc, the combination of
fields ϕðx1Þ þ ϕðx2Þ becomes pinned by the backscattering
term Eq. (6). At smaller energy scales D ≪ Γ0ðN gÞ, the
dynamics of ϕðx1Þ and ϕðx2Þ consists of hops between
the equivalent minima of energy Eq. (6) which defines the
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two-dimensional “landscape” in the plane of ϕðx1Þ, ϕðx2Þ.
The least-irrelevant hopping term in the effective low-
energy Hamiltonian shifts ϕðx1Þ þ ϕðx2Þ by 2π,

~HB ¼ −λðDÞD cos ½θðxþ2 Þ − θðx−2 Þ þ θðxþ1 Þ − θðx−1 Þ�: ð9Þ
Here, the fields θðx−2 ; τÞ and θðxþ1 ; τÞ refer to the prox-
imitized nanowire, whereas points x−1 and xþ2 belong to the
leads; see Fig. 1(a). At the crossover energy scale D ∼Dc,
the running constant λðDcÞ ∼ 1, and it decreases upon
reducing the bandwidth. The RG flow for λ in the domain
Γ0ðN gÞ ≫ D ≫ ΔP is controlled by dλ=dl ¼ −λ and
yields λðDÞ ∼ λðDcÞD=Dc ∼D=Dc. The dynamics of
fields θðx1;2Þ on energy scales E≲D is governed by
Eqs. (2), (4), and (9) with the boundary conditions
∂xθðx�1;2Þ ¼ 0, compatible with Eq. (9).
Hamiltonian (9) corresponds to an electron transfer into

one end of the proximitized wire, while another electron is
taken out from the opposite end. This way, a single-electron
charge e is transferred between the leads. The correspond-
ing current operator reads

I ¼ eλðDÞD sin ½θðxþ2 Þ − θðx−2 Þ þ θðxþ1 Þ − θðx−1 Þ�: ð10Þ
Using it, one may evaluate the two-terminal conductance
at temperatures T ≪ Γ0ðN gÞ by means of the Kubo
formula [43],

G¼ 1

2T

Z
∞

−∞
dtΠ

�
itþ 1

2T

�
; ΠðτÞ¼hIðτÞIð0Þi ð11Þ

(here, τ is imaginary time). In the intermediate range of
temperatures ΔP ≪ T ≪ Γ0ðN gÞ, one may ignore the
pairing interaction Eq. (4) and use the free-field action
to determine the time evolution of the current operator
Eq. (10). The result for the conductance GðN g; TÞ is

GðN g; TÞ
G0

¼ c1
T2

Γ2
0ðN gÞ

: ð12Þ

Finding the numerical coefficient c1 here is beyond the
accuracy of the RG treatment, but it is known from the
exact solution, c1 ¼ ðπ2=6Þ [34].
At lower temperatures T ≪ ΔP, fluctuations of the field

θðx; τÞ within the proximitized wire (x1 < x < x2) are
suppressed by the superconducting pairing term, Eq. (4).
To evaluate the conductance, we may reduce the bandwidth
down to D ∼ ΔP, yielding λðΔPÞ ∼ ðΔP=DcÞ in Eq. (9),
where now fields θðxþ1 ; τÞ and θðx−2 ; τÞ are pinned to a
minimum of pairing energy. With these fields being pinned,
Eq. (9) describes tunneling of an electron between points
x−1 and xþ2 belonging to the opposite leads. The corre-
sponding tunneling action takes the form

SB ¼
Z

dω
2π

jωj
2π

jθ−j2 −
Z

1=T

Δ−1
P

dτλðDÞD cos
ffiffiffi
2

p
θ−; ð13Þ

where θ− ¼ ½θðxþ2 Þ − θðx−1 Þ�=
ffiffiffi
2

p
. Note that the boundary

perturbation term in Eq. (13) becomes marginal now

(i.e., dλ=dl ¼ 0), and the problem at hand maps onto
weak tunneling of a free fermion across an impurity. Using
Kubo formula (11), one can readily calculate two-terminal
conductance to find

GðN gÞ
G0

¼ c2
Δ2

P

Γ2
0ðN gÞ

; c2 ≈ π2: ð14Þ

Note that the results obtained in the adjacent temperature
intervals Eqs. (12) and (14) match each other at T ∼ ΔP.
This temperature-independent conductance (14) is due to

elastic cotunneling processes in which an electron enters
the BCS condensate at one end of the wire with another
electron exiting the condensate from its opposite end,
leaving no excitations behind. The corresponding low-
energy Hamiltonian has the following form in the fermion
representation:

~HB ≈ −
ffiffiffiffiffi
c2

p
πv

ΔP

Γ0ðN gÞ
ψ†ðxþ2 Þψðx−1 Þγ1γ2 þ H:c: ð15Þ

Here, γ1 and γ2 are the Majorana fermion operators
localized, respectively, at x1 and x2, while ψ†ðxþ1 Þ and
ψ†ðxþ2 Þ are the electron operators in the corresponding
leads. Equation (15) describes elastic cotunneling through
Majorana zero modes similar to the weak coupling limit
[32,33] and allows one to rederive Eq. (14). The value of
the numerical coefficient c2 in Eq. (14) is found by
obtaining Eq. (15) within a controllable refermionization
routine [44].
We now consider the weak-reflection case Γ0ðN gÞ≪ΔP,

which is realized in a symmetric device at a gate voltage
close to a charge degeneracy point or at any gate voltage if
the reflection amplitudes r1;2 are sufficiently small (and not
necessarily equal to each other). At intermediate energy
scale EC ≫ E ≫ ΔP, the pairing interaction Eq. (4) and the
boundary Hamiltonian Eq. (6) can be treated perturbatively.
Thus, the only constraint on fluctuations of ϕðxÞ and θðxÞ
within the proximitized wire is the pinning of the
combination of fields ϕðx2Þ − ϕðx1Þ by charging energy.
As follows from Ref. [34], the conductance in the regime
T ≫ ΔP ≫ Γ0 is G ≈G0=2 [45].
Upon reducing the temperature below ΔP, the pairing

interaction (4) suppresses the fluctuations of θðxÞ within
the proximitized segment, i.e., ∂τθðx; τÞ ¼ 0. Thus, the
condition ∂xϕðx1;2; τÞ ¼ 0 is enforced at the ends of the
segment. To evaluate the conductance in the limit of no
backscattering [Γ0ðN gÞ → 0], we integrate out modes
away from x1 and x2 to obtain the boundary action in
terms of the relevant degree of freedom ϕþ ¼
(ϕðx1Þ þ ϕðx2Þ)=

ffiffiffi
2

p
,

S0 ¼
Z

ΔP

0

dω
2π

jωj
2π

jϕþj2: ð16Þ

The dc conductance is obtained then by using Kubo
formula Eq. (11); the current operator in this limit is
given by
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I ¼ e
2π

½∂tϕðx1Þ þ ∂tϕðx2Þ� ¼
e
2π

ffiffiffi
2

p ∂tϕ
þ: ð17Þ

Upon evaluatingΠðτÞ ¼ ½e2=ð2π2Þ�h∂τϕ
þðτÞ∂τ0ϕ

þðτ0Þiτ0¼0

using Eq. (16), we find that GðN gÞ ¼ G0 in the absence of
backscattering. The full quantized value of the conductance
GðN gÞ is in agreement with the notion of single-electron
resonant tunneling via a Majorana state [32,33]. One may
notice that the conductance grows by a factor of 2 once the
temperature is lowered across the scale set by ΔP. This
prediction can be easily verified in current experiments on
proximitized nanowires [19,20].
To account for backscattering, we use Eq. (6) with the

bandwidth D ∼ ΔP,

HB ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4ECΔP

p
rðN gÞ cos½ϕðx1Þ

þ ϕðx2Þ − αðN gÞ�; ð18Þ
with c4 ∼ 1. At E≲ ΔP, the long-wavelength fluctuations
within the proximitized wire (i.e., in the interval
x1 < x < x2) are gapped out by the pairing term (4). As
a result, the boundary term (18) becomes marginal
(dr=dl ¼ 0) and remains small. The backscattering term
Eq. (18) augments the free-field Hamiltonian and modifies
the boundary action,

S ¼ S0 −
Z

T−1

ΔP
−1
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4ECΔP

p
rðN gÞ cosð

ffiffiffi
2

p
ϕþÞ: ð19Þ

One can notice that the problem at hand maps onto the
single-impurity model in the weak-backscattering limit
characterized by strong fluctuations ϕþ of charge passing
through the nanowire. This is to be contrasted with the
strong-pinning limit, Eq. (13).
The evaluation of the correction to the conductance δG

within the second-order perturbation theory in rðN gÞ (see,
e.g., Refs. [48,49]) yields

GðN gÞ − G0

G0

∼ −
Γ0ðN gÞ
ΔP

; ð20Þ

where Γ0ðN gÞ is defined in Eq. (8). The numerical
prefactor in Eq. (20) is beyond the accuracy of the RG
procedure. The maximal value of ΓðN gÞ equals Γmax ¼
ð2eC=π2ÞECjr1 þ r2j2 and is reached at every integerN g. If
the reflection amplitudes r1;2 are small enough so that
Γmax ≪ ΔP, then Eq. (20) is applicable at all gate voltages.
In the opposite case, Eq. (20) may be applicable in the
vicinity of the half-integer values ofN g, provided the setup
is almost symmetric, ECjr1 − r2j2 ≪ ΔP.
The developed scaling theory allows us to establish the

evolution of the GðN gÞ function upon increase of the
reflection amplitudes. The two-terminal conductance oscil-
lations with N g are fully washed out by quantum fluctua-
tions if r1 or r2 is zero. At small but finite amplitudes
Γmax ≪ ΔP, oscillations are weak; see Eq. (20) and
Fig. 1(b). We will sketch further evolution of GðN gÞ
assuming a symmetric setup, r1 ¼ r2 ≡ r. Once r becomes

large enough so that Γmax ≫ ΔP, the applicability of
Eq. (20) is confined to the vicinities of the half-integer
values of N g. One may use Eq. (14) to estimate conduct-
ance away from these degeneracy points. Matching
Eqs. (20) and (14) with each other, we find

η ∼ ½ΔP=ECð1 − gÞ�1=2 ð21Þ
for the width of the conductance maxima; see Fig. 1(b).
Further increase of the reflection amplitudes eventually

results in the crossover to a weak-tunneling regime,
g1;2 ≪ 1. Considering it, we will still concentrate on a
symmetric setup, g1 ¼ g2 ≡ g. At ΔP ¼ 0, quantum fluc-
tuations of charge of the island result in the logarithmic
renormalization of the transmission amplitudes of the
two junctions connecting it with the leads [34]. Because
of this “charge Kondo” renormalization, the transmission
amplitudes reach value ∼1 at the energy scale TK ≈
EC expð−π2=2 ffiffiffi

g
p Þ if N g is tuned to a narrow region

jN g − 1=2j≲ TK=EC. The presence ofΔP does not prevent
the aforementioned logarithmic renormalization as long as
ΔP ≪ TK . At energy scales below TK, we may use the
strong tunneling RG theory developed above, with the
proper replacement of the parameters. Namely, in Eq. (6),
we change EC → TK and modify rðN gÞ from the one
given in Eq. (7) to rðN gÞ ∼ ðEC=TKÞðN g − 1=2Þ. As a
result, energy scale Γ0ðN gÞ of Eq. (8) is changed to
~Γ0ðN gÞ ∼ ðE2

C=TKÞðN g − 1=2Þ2. We may use ~Γ0ðN gÞ to
estimate the conductance with the help of Eqs. (20) and
(14). It easy to see that the maxima of GðN gÞ under the
considered conditions have width

η ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔPTK=E2

C

q
; ΔP ≲ TK: ð22Þ

At even smaller g, the gap ΔP exceeds TK and cuts off
the logarithmic renormalization of the transmission ampli-
tudes before those reach the strong tunneling limit. As the
result, GðN gÞ corresponds to a conventional Breit-Wigner
resonance [33], with the width defined by the properly
renormalized tunneling amplitudes [34],

η ∼
ΔP

EC

g=4π

cos2½π
2

lnðEC=ΔPÞ
lnðEC=TKÞ�

; ΔP ≳ TK: ð23Þ

Notice that Eq. (22) valid at an intermediate range of
conductances (defined by the ratio ΔP=EC) matches the
strong and weak tunneling results, Eqs. (21) and (23), at
TK ∼ EC and TK ∼ ΔP, respectively [50].
A Coulomb blockade of electron transport across a

normal-state metallic island results in oscillations of the
conductance GðN gÞ with the gate voltage. The periodicity
of oscillations corresponds to the increment e of the charge
N g induced on the island by the gate. Conductance across a
proximitized wire in the topologically nontrivial super-
conducting state exhibits oscillations with the same period.
Yet, the behavior of the function GðN gÞ is drastically
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different. This becomes especially clear in the case of a
symmetric device with two identical single-channel junc-
tions. In the normal state, GðN gÞ is controlled by an
unstable two-channel Kondo fixed point. The conductance
maxima scale linearly with temperature T, reaching value
G ¼ G0=2 and becoming infinitely narrow in the limit
T → 0. On the contrary, conductance maxima in GðN gÞ
across a proximitized wire reach value G ¼ G0 and retain
finite width at T → 0. We have demonstrated that the
corresponding transport problem is mapped onto single-
electron tunneling at any value of the bare conductance g of
the junctions and found the evolution of theGðN gÞwith the
increase of g from g ≪ 1 to g → 1.
Advances in experiments with metal-semiconductor

hybrids recently allowed one to map out the conductance
of a normal-state metallic island connected to leads by
single-channel junctions [51,52] and confirmed many of
the predictions of the corresponding theory [34]. The
parallel development of the proximitized nanowires [20]
set the stage for the extension of the strong tunneling
Coulomb blockade experiments into the domain of the
topological superconductivity.

This work is supported by Department of Energy
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