
Longitudinal and Transverse Instability of Ion Acoustic Waves

T. Chapman,* R. L. Berger, and B. I. Cohen
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA

J. W. Banks
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 301 Amos Eaton Hall, Troy, New York 12180, USA

S. Brunner
Swiss Plasma Centre, École Polytechnique Fédérale de Lausanne, Station 13, CH-1015 Lausanne, Switzerland

(Received 25 January 2017; published 4 August 2017)

Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process
dominates depends on the parameters. In the cases examined, the decay channel where daughter modes
propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel
where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes.
Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid
theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.
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Ion acoustic waves (IAWs) in plasma are susceptible to
decay processes. With weak or absent damping [1], an IAW
can decay to daughter IAWs. Using simulation techniques
novel in the study of IAWs, we find IAWs are unstable via
at least two distinct decay mechanisms, with a threshold for
instability far below fluid theory and a decay mode growth
rate significantly faster than fluid theory. Which decay
process dominates in the linear phase of instability is
dependent on the parameters. We find that other properties
of IAW decay, such as the direction of propagation of the
dominant decay modes, do not conform to existing theory.
IAWs may be excited by a variety of mechanisms under

controlled laboratory experiments and during inertial con-
finement fusion (ICF) experiments. In typical ICF designs,
laser light must propagate through high-gain plasma and
overlap with multiple crossing laser beams. Understanding
the onset and saturation of stimulated Brillouin scattering
(SBS) and crossed-beam energy transfer [2,3] mediated
by IAWs is vital to designing successful experiments and
avoiding optics damage [4,5]. Ongoing efforts to model
laser-plasma interaction in ICF experiments [6] with linear
plasma wave descriptions require clamps on IAW ampli-
tudes, suggesting IAW nonlinearity. Experimentally, IAW
decay has been correlated with SBS saturation [7] and off-
axis decay modes have been observed [8].
In the following, we demonstrate for the first time the

decay of IAWs to daughter modes via multiple distinct
channels using a fully kinetic numerical treatment. Such a
treatment is necessary to describe correctly the impact of
particle trapping on the evolution of the IAWs, including
nonlinear wave couplings, dampings, and frequencies. Our
collisionless and noiseless (to machine precision) Vlasov
simulations are 2Dþ 2V (two configuration spaceþ
two velocity space dimensions). The results obtained reveal

a picture of IAW decay that is qualitatively different from
previous 2D numerical [9–13] and theoretical [12–14]
treatments where the electrons were not treated as kinetic
reveal decay processes not captured by fully kinetic 1D
simulations [15–18], and they allow measurement of linear
growth rates not possible in previous fully kinetic 2D and 3D
simulations [19] due to discrete particle noise.
Our results show two clearly distinct IAW decay

channels, with daughter waves characterized by differing
wave numbers k ¼ ðk∥; k⊥Þ, where subscripts indicate the
orientation relative to the mother wave. (i) Daughter waves
with k⊥ ¼ 0 and a growth rate that peaks at k∥ ¼ k1=2,
where kð1;0Þ ¼ ðk1; 0Þ is the wave number of the mother
wave. This resonant three-wave process is known as two-
ion wave decay (TID) [20]. (ii) Daughter waves with a
growth rate that peaks at jk⊥j > 0 and k∥ ¼ k1, which we
refer to here as off-axis instability (OAI). In the following,
modes are distinguished by a subscript l (not necessary an
integer) that indicates a quantity relative to the mother
mode, e.g., kl ¼ lk1 and kðl;mÞ ¼ ðkl; kmÞ.
This Letter is organized as follows: First, we briefly

describe our numerical method. Next, we use a single case
to illustrate the various processes taking place during IAW
decay. Afterwards, the scaling of the decay processes are
discussed.
In order to study IAW decay, we use the Vlasov code

LOKI [21–23], which employs fourth-order-accurate,
conservative, finite difference algorithms in 2Dþ 2V
space, with variables time t, space r ¼ ðx; yÞ, and velocity
v ¼ ðvx; vyÞ. The plasma is periodic in both spatial dimen-
sions (directions x̂ and ŷ). Both electrons (e) and ions (i)
are described using continuum representations of their
respective distribution functions fj ¼ fjðt; r; vÞ, where
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j ¼ e, i. fj is initialized as a spatially homogeneous 2D
Maxwellian, fj0 ¼ fj0ðvÞ ¼ ½1=ð2πv2tjÞ� exp½−v2=2�, with
initial temperature Tj and thermal velocity vtj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Tj=mj

p

,
where mj is the mass of species j. The meshes are uniform,
with spacings for each species no coarser thanΔx¼0.44λDe,
Δy ¼ 3.1λDe, Δvx ¼ 0.21vtj, Δvy ¼ 0.25vtj, while the
time step Δt of the explicit scheme satisfies a Courant-
Friedrichs-Lewy condition (typically, Δt ∼ 0.04=ωpe, where
ωpe is the electron plasma frequency). The velocity domain
of fj is truncated such that vx;y ∈ ½−8vtj; 8vtj�, or, in the
case of the positive vx boundary for the ions, whatever is
necessary to comfortably contain the phase velocity plus
the ion trapping half-width (up to ∼20vti). A characteristic
velocity boundary condition is applied [22]. The computa-
tional burden of the simulations presented here is significant:
owing to the 4D phase space and the need to resolve electron
kinetic physics over a time scale dictated by the ions, our
largest simulations shown here required ∼1 × 109 mesh
points and ∼2 × 106 time steps (equivalent to a duration
∼105=ωpe). Convergence of our numerical results was
checked by various numerical resolution studies and, further,
by increasing the order of the numerical scheme from 4 to 6.
We present first a single illustrative example of an IAW

through excitation, Bernstein-Greene-Krushkal (BGK)-like
[24] propagation, and then decay into a turbulent spectrum
of daughter modes through multiple channels. The mini-
mum set of dimensionless parameters needed to describe
linear IAWs is ZTe=Ti, Zme=mi, and kλDe, where λDe is the
electron Debye length. For numerical efficiency, the plasma
is chosen here to be fully ionized hydrogen (charge Z ¼ 1).
We use a physical mass ratio such that Zmi=me ¼ 1836,
and here select ZTe=Ti ¼ 8 and k1λDe ¼ 0.4 (effective
parameters typical of those in, e.g., ICF experiments).
A planewavewith frequencyω ≈ ωL

1 ¼ 0.469ωpi and wave
number k ¼ ðk1; 0Þ is excited parallel to x̂ in a system with
length Lx ¼ 8λ1 ≈ 126λDe by a spatially and temporally
sinusoidal driver resonant with the linear mother IAW,
where the wavelength λ is given by λ ¼ 2π=k. ωpi is the
ion plasma frequency and the superscript L denotes a linear
mode frequency; NL (used later) denotes the actual (ampli-
tude-dependent) nonlinear mode frequency. The system is
chosen to be of width Ly ¼ 38.4λ1 ≈ 600λDe.
The electrostatic energy UES of the system increases

while the wave is driven, as shown in Fig. 1(a); the driver
field ED is applied to the electrons and ramped up to
eλDeED=Te ¼ 0.0175 and down to zero across the gray
region. After the driver is switched off at ωpit ≈ 200,UES is
nearly constant apart from fast-time-scale oscillations due
to trapped ions exchanging energy with the wave. The wave
continues in a BGK-like state until ωpit ∼ 1.35 × 103, at
which pointUES crashes and does not recover. Snapshots of
the electric potential energyΦ are shown in Figs. 1(b)–1(e).
After the driver is switched off, but before the crash in UES,
the envelope amplitude of Φ is jeϕ=Tej ∼ 0.15.

In Fig. 1(b), the wave is still in an approximately plane
λ1-periodic state, although multiple nonlinear effects are
present. Particle trapping (of both electrons and ions)
results in a modified (qualitatively flattened) distribution
function in the region of velocity space resonant with
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FIG. 1. ZTe=Ti ¼ 8, kλDe ¼ 0.4, Zme=mi ¼ 1=1836 (H
plasma). (a) Evolution of the electrostatic (UES), electron kinetic
(Ke) and ion kinetic (Ki) energies. The driven (undriven) period
is shown in gray (white). (b)–(e) Snapshots of the IAW potential
Φ before, during, and after the crash in electrostatic energy. The
half harmonic (λ ¼ 2λ1) is the dominant mode during the crash.
The distribution functions fe;i in (f)–(k) are snapshots shown as
deviations from Maxwellian fMe;i, taken (f),(h),(j) before and
(g),(i),(k) after the crash in UES at times indicated by the leftmost
and rightmost red dashed lines, respectively, in (a). Shown are
(f),(g) Δ ~fe ¼ðvte=ne0Þ

R ðhfeiy−fe0Þdvy; (h),(i) Δ ~fi ¼ ðvti=ni0Þ
R ðhfiiy − fi0Þdvy; and (j),(k) Δ ~fi ¼ ðv2ti=ni0Þðhfiix;y − fi0Þ.
h� � �ia indicates an averaging over the dimension(s) a. The white
dashed lines in (f)–(k) indicate the measured nonlinear phase
velocity v1 ¼ ω1=k1 of the fundamental mode, while black
dashed lines show analytic estimates of the species trapping
widths, v1 � vtr;j.
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v1 ¼ ω1=k1 (this resonance half-width is given analytically
by vtr;j=vtj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zjeϕ=Tj

p

). This modification results in a
nonlinear frequency shift away from ωL

1 that is negative in
this case (quantified later) [25–27], reduced or completely
eliminated Landau damping [1], and harmonic generation
(wave steepening) producing l ¼ 2; 3;…modes larger than
predicted by fluid theory [17,27], which also contribute to
the nonlinear frequency.
In Fig. 1(c), the decay modes have grown to the point that

the periodicity of thewave has changed from λ1 to∼λ1=2: the
so-called half harmonic [l ¼ 1=2, k ¼ ðk1=2; 0Þ] of the
l ¼ 1 mode is briefly dominant, having grown faster than all
other decay modes (discussed quantitatively later). Despite
there still being a dominant IAW mode, UES has already
begun to decrease at this point, which we attribute to wave-
particle effects, such as the loss of previously trapped
particles from the wave and the work done by the wave
as the distribution functions respond to the changing wave
potential. Accounting for the k-dependent sloshing energy of
the electrons and ions as the spectrum evolves does not
explain the loss of UES (see, e.g., Refs. [14,16,18]).
In Figs. 1(d) and 1(e), the IAW mode spectrum becomes

increasingly turbulent, and modes with jk⊥j > 0 are sig-
nificant. The resulting transverse modulation of the poten-
tial gives rise to wave front bowing, the negative nonlinear
frequency shift causing a retardation of higher-amplitude
phase fronts, and perhaps self-focusing [19,22,28]. UES
tends to zero, similar to the behavior seen in 1D systems
[17], with dwindling solitonlike localized wave packets.
The oscillations in electrostatic energy UES reflect an

exchange primarily with trapped particles; the resultant
oscillation in electron and ion kinetic energies, Ke and Ki,
is shown in Fig. 1(a), as is the total energy (quiescent
kinetic energies have been subtracted). After the onset of
turbulence, electrostatic energy is lost primarily to the ions.
The distribution functions are altered significantly by the
transition to a turbulent state. The loss of periodicity in fe
and fi is readily apparent in Figs. 1(f)–1(i), where snap-
shots of fj are taken pre- and post-turbulence at the times
indicated in Fig. 1(a) (the leftmost and rightmost red
vertical dashed lines, respectively). Particles are released
from λ1-periodic orbits along vx [the separatrix between
passing and trapped trajectories is evident in Figs. 1(f)
and 1(h)] and the distribution becomes washed out after the
onset of turbulence. The growth of OAI modes also acts to
smear fj along vy: fi averaged over space is shown in
Figs. 1(j) and 1(k) at the same pre- and post-turbulent times,
exhibiting a clear transverse acceleration of trapped ions.
The evolution of the Fourier modes corresponding to

the mother and fastest-growing daughter modes driven by
TID and OAI are shown in Fig. 2(a) for the case shown in
Fig. 1. The linear decay mode growth rates γðkx; kyÞ
[measured by taking exponential fits, as in the black dashed
line in Fig. 2(a)] are shown in Fig. 2(b) and accompanying
real frequencies in Fig. 2(c). We observe two distinct

instabilities of the initially near-monochromatic (l ¼ 1
mode) IAW: a purely longitudinal instability known as
TID [20], for which γ ¼ γðkx; 0Þ, and transverse modula-
tional-type instability referred to here as OAI, where
γ ¼ γðkx; jkyj > 0Þ. A spatially 1D system that permits
spatial variation along only the direction of propagation
of the mother wave recovers the same linear TID growth
rate as the 2D system shown in Fig. 2(d), but it does not
permit OAI (this was confirmed by comparing 1D and 2D
simulations). As in related 1D studies [17,29], Bloch-
Floquet–type eigenmodes are present [i.e., γðkx; 0Þ
is symmetric about kn over the interval ð½n − 1=2�k1;
½nþ 1=2�k1Þ, where n ¼ 1; 2;…, with period k1], con-
forming to the linear stability analysis of periodic waves by
Goldman [30].
The hallmark of TID is a decay mode growth rate that

peaks at the half harmonic. This decay channel is dominant
in this example of IAW decay, and the channel is respon-
sible for the transition from a system dominated by the
l ¼ 1 mode shown in Fig. 1(b) to a system dominated by
the l ¼ 1=2 mode shown in Fig. 1(c). The growth rate in
simulations exceeds estimates from fluid theory [20] by a
factor of ∼3 in this case [17].
While slower in this case than TID, the OAI growth rate

is still significant and peaks at kxλDe ¼ k1λDe ¼ 0.4 and
kyλDe ∼ 0.1, although it varies weakly with kx. Similarly to
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FIG. 2. Fourier space analysis of the case presented in Fig. 1.
(a) Fourier mode evolution of the mother and fastest-growing
daughter modes corresponding to TID and OAI. (b) Linear
(preturbulence) growth rates γ ¼ γðkx; kyÞ. (c) Mode frequencies
ω ¼ ωðkx; kyÞ. (d) TID growth rate, γ ¼ γðkx; 0Þ. (e) Slices
showing γ for various fixed kx’s. Arrows indicate identical modes
in (d) and (e).
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TID, the OAI occurring for modes with growth rates
γðk1; kyÞ measured here and shown in Fig. 2(e) may be
recovered in a simpler system that is large in the transverse
direction and only a single wavelength long (Lx ¼ λ1).
Such a system does not support TID. However, in the
systems considered here that are both large in the transverse
direction and many wavelengths long, we observe a growth
of modes with k ¼ ðkx ≠ k1; jkyj > 0Þ that cannot be
observed in simplified systems.
All decay modes in the linear phase of growth have

frequencies ω ≈ ðkx=k1Þω1, as seen in Fig. 2(c). Decay
mode frequencies appear to be independent of ky. The
mode frequency was calculated by taking the time deriva-
tive of the phase of the complex mode amplitude after a 2D
Fourier transform in space, here averaged over the interval
ωpit ¼ ½1 × 103; 1.3 × 103�; this method is more approxi-
mate than the Hilbert transform method [27] used to extract
ωNL
1 , the nonlinear mother mode frequency, but adequate to

determine the overall behavior of ωðkx; kyÞ.
The scaling of γ with jϕ1j, the potential of the mode

k ¼ ðk1; 0Þ, is shown in Fig. 3(a), generated by exciting
mother IAWs of various amplitudes and measuring γ in
each case. For these parameters (ZTe=Ti ¼ 8, Zme=mi ¼
1=1836, k1λDe ¼ 0.4), TID (the vertical cross points) is the
dominant decay mechanism for jeϕ1=Tej ≳ 0.025, as is
the case in Fig. 1, where jeϕ1=Tej ≈ 0.15. For OAI, γ is
consistently greatest at kx ¼ k1 (the diamond points), and
scales similarly with jϕ1j for all kx. At jeϕ1=Tej ≈ 0.025, γ
is similar across all decay channels. For jeϕ1=Tej≲ 0.025,
TID is slower than OAI and, at jeϕ1=Tej ¼ 0.011, TID is
below threshold and does not occur.
The TID daughter modes have phase velocities that are

identical to the mother mode’s due to the one-dimensional
nature of the three-wave decay, matching conditions for
frequency and wave number, and the acoustic dispersion
of the IAWs. The trapping-induced flattening of the
distribution function caused by the mother mode therefore
suppresses Landau damping of the daughter modes also.

Neglecting trapping, a threshold for TID based on a linear
Landau damping rate of the l ¼ 1=2 mode [20] ν1=2 ¼
0.043ωL

1=2 suggests a TID amplitude threshold ϕtr
1 of

jeϕtr
1=Tej ≈ 0.09. A threshold arising from the nonlinear

scaling of ω with k from the fluid theory of IAWs suggests
[17] jeϕtr

1=Tej ≈ 0.04. Such descriptions of TID are clearly
insufficient, as was observed previously [17]. We have not
observed a threshold for OAI at kx ¼ k1.
In Fig. 3(b), the scaling of ky with jϕ1j for the fastest-

growing OAI mode, k ¼ kð1;maxÞ ¼ ðk1; kmax
y Þ, is shown

(the left vertical axis). The sidebands of OAI move farther
in jkyj from the mother IAW as jϕ1j is increased. The
scaling of the nonlinear frequency shift ΔωNL

1 ¼ ωNL
1 − ωL

1

with jϕ1j is also shown in Fig. 3(b) (the right vertical axis).
In this case, the opposing electron and ion contributions to
the trapping-induced nonlinear frequency shift expected
from nonlinear analysis [27] almost cancel, and indeed the
overall shift is small until jeϕ1=Tej≳ 0.1.
Previous attempts at deriving a multidimensional theory

of IAW decay [12–14] have not included explicit electron
kinetic effects, although Ref. [14] permitted an arbitrary
frequency shift that could be taken to include an electron
contribution. None of these substantial works appear to
capture the decay properties observed here, such as the
consistent presence of TID and OAI, and the relatively weak
dependence of the growth rate of OAI modes on kx=k1. One
can write a Schrödinger-type equation for IAWs describing
transverse instability similar to that studied in Ref. [31] for
longitudinal instability (see, e.g., Ref. [32]). Such a model is
based on the total frequency shift of the mother mode,ΔωNL

1 .
With IAWs, it is possible to measure ΔωNL

1 ≃ 0 for finite
jϕ1j due to the opposite signs of the contributions from
electrons and ions. Indeed, this is the case in Fig. 3 for
jeϕ1=Tej≲ 0.025, yet a transverse instability is observed.
Perhaps a more likely candidate for an off-axis instability

mechanism is an ion-driven trapped particle instability (TPI)
akin to that observed in the longitudinal direction unam-
biguously in electron plasma waves (EPWs) in 1D [29,33]
(we emphasize that they are ion driven since the electron
bounce frequency is very large compared to the IAW
frequency, preventing resonance), which may also drive a
transverse filamentationlike TPI in EPWs [32]. Our attempts
to derive a TPI growth rate for IAWs analytically have not
yielded results that agreewith the simulations. However, this
and similar models of trapped particle instabilities typically
assume (i) that the initial state of the IAW can be considered
monochromatic, while, in actuality, jϕ2j=jϕ1j ∼ 0.35 for
jeϕ=Tej ¼ 0.15, (ii) that the trapped particles reside at the
bottom of the potential well of the wave and have a single
frequency, which for IAWs tends to be a rather poor
approximation [27], and (iii) that all trapping effects can
be described perturbatively, which, for the range of wave
amplitudes studied here, may not be the case.
In conclusion, we find that ion acoustic waves exhibit at

least two distinct and competing decay processes. While a
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FIG. 3. Analysis of cases with the same parameters as Fig. 1 but
varying mother wave amplitudes (the horizontal axis). (a) Scaling
of γ with jϕ1j for TID and OAI. The gray horizontal line indicates
the linear Landau damping rate of the l ¼ 1=2mode, ν1=2. (b) The
scaling of ky for the fastest-growing mode for OAI with jϕ1j (the
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single decay process might lead to the initial breakup of the
wave either transversely or longitudinally, once a nonlinear
state is reached, breakup in both directions is typical. Which
decay process dominates initially is dependent on the param-
eters. Thresholds for instability do not agree with estimates
based on linear (quiescent plasma) damping rates, and
instability growth rates do not conform to existing theories.
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