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In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but
transient. Using extensive simulations employing different mathematical models we identify a specific
type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an
investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D,
simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness.
Finally, potential implications for understanding cardiac arrhythmias are discussed.
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Chaotic behavior of dynamical systems is a widespread
and well-studied phenomenon. It can be observed in a large
diversity of systems from simple low-dimensional regimes
up to complex and high-dimensional dynamics. However, in
many cases it is of great interestwhether the observed chaotic
dynamics (both in theoretical models and experiments) are
persistent or temporary. From a nonlinear dynamics point of
view, the dynamics of the latter one is usually determined by
chaotic saddles or repellers, whereas persistent chaos is
governed by a chaotic attractor. In practice, chaotic transients
occur invarious fields like ecology [1], particle advection [2],
or chemical reactions [3]. In fact, the difference between
transient and persistent chaos can be vital in medicine:
In cardiology, cardiac arrhythmias (like ventricular fibrilla-
tion) can be associated with highly chaotic spatiotemporal
wave dynamics inside the heart [4–7], which is lethal in
many cases due to the dysfunctional pumping function.
Distinguishing between persistent and transient arrhythmias
is thus essential, and it may, in the future, have an impact on
the medical treatment and risk assessment of cardiac
arrhythmias.
In this work we investigate chaotic transients in extended

reaction-diffusion systems of excitable media using two
different numerical models that describe the action poten-
tial propagation in cardiac tissue: The Aliev-Panfilov model
[8] is a two-variable model (five parameters) for cardiac
excitation, described by the equations

∂u
∂t ¼ ∇ ·D∇u − kuð1 − uÞða − uÞ − uv; ð1Þ

∂v
∂t ¼ ϵðu; vÞ½−v − kuðu − a − 1Þ�; ð2Þ

ϵðu; vÞ ¼ ϵ0 þ
μ1v

uþ μ2
: ð3Þ

The Fenton-Karma model [9] [Eqs. (4)–(5)] is a three
variable model with fourteen parameters, which comprises

an approach for modeling the ion channel dynamics of a
cell:

∂u
∂t ¼ ∇D∇u − Iionðu;hÞ=Cm; ð4Þ

∂h
∂t ¼ gðu;hÞ: ð5Þ

The detailed equations that describe the ionic currents
Iion in Eq. (4), and the evolution equations for the gating
variables h ¼ ðv; wÞ [Eq. (5)], can be found in the
Supplemental Material [10].
In both models, the first term in Eqs. (1) and (4),

respectively, describes the diffusive part of the dynamic
system. In our simulations, a scalar and homogeneous
diffusion tensor was chosen (D ¼ D ¼ 0.2). The differ-
ential equations, Eqs. (1)–(3) and Eqs. (4)–(5), were solved
on a spatial grid (with a model specific spacing constant h)
using an explicit Euler scheme with no-flux boundary
conditions.
Different choices of parameters cause diverse behavior

of spiral or scroll waves (concerning, for example, breakup
mechanisms or spiral tip trajectories) [11]. In order to
investigate whether properties related to the transient nature
of the chaotic dynamics are robust under a change of the
local cell dynamic model, and also under a change of
parameters, we investigate three distinct cell dynamics: the
Aliev-Panfilov model [Eqs. (1)–(3)] from now on abbre-
viated with AP (solved using a spacing constant h ¼ 0.8
and dt ¼ 0.2), and the Fenton-Karma model [Eqs. (4)–(5)],
using two different parameter sets (all simulation
parameters can be found in the Supplemental Material
[10]), from now on abbreviated with FK1 (with h ¼ 1.0
and dt ¼ 0.2) and FK2 (with h ¼ 1.5 and dt ¼ 0.1),
respectively. Both sets of parameters (FK1 and FK2)
were investigated in [11] and create a spiral wave breakup
by different mechanisms [biphasic action potential duration
(APD) restitution curve, and supernormal conduction
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velocity, respectively]. Figure 1 shows snapshots of the
chaotic dynamics (variable u) of the discussed models (AP,
FK1, and FK2) in a rectangular two-dimensional domain.
The escape rate κ is the quantity that measures how fast

random initial conditions (which are governed by the
chaotic dynamics) escape the chaotic saddle and reach
the final (nonchaotic) state. By generating many initial
conditions and determining the fraction that still shows
chaotic dynamics at time t, NChðtÞ, the escape rate κ can be
extracted, since this quantity typically decreases exponen-
tially in time with NChðtÞ ∼ expð−κtÞ [12].
As a first step, we investigated the role of the system size

in 2D simulations. In [13] two types of supertransients
(systems where the escape rate decreases rapidly with the
system size) are distinguished. In systems of type-I super-
transients (nonstationary transients), the number of objects
which are essential for the chaotic dynamics (e.g., “defects”
or “regions of turbulence”) decreases in time, and the
dynamics converge over time to the final state. For this
class of systems, the dependence of the escape rate κ on the
system size L can usually be described by a power law
[Eq. (6), with β > 0]. In systems that show transients of
type-II in comparison, the transition to the final attractor is
abrupt, and cannot usually be predicted by quantities like
time series. The escape rate κ increases exponentially with
the system size L [Eq. (7), with the parameters a > 0 and
γ > 0],

κðLÞ ∼ L−β; ð6Þ

κðLÞ ∼ expð−aLγÞ: ð7Þ
Instead of the escape rate κ in the following the inverse

escape rate is considered, which is an estimate for the
average transient lifetime hTi ≈ 1=κ [12].
In 2D simulations on a rectangular domain, the

average transient lifetime was determined for various
sizes of the 2D simulation area. While keeping the grid
spacing h constant for each model, the simulation
domain Lx × Ly ¼ ðNxhÞ × ðNyhÞ was increased by
changing the number of grid points (Nx×Ny∈
½80×80;90×90;100×100;110×110;120×120;130×130�).
For each domain size, 3000 initial conditions were

created (details about the induction protocol can be
found in the Supplemental Material [10]). Self-termination
of a simulation was declared when the overall excita-
tion (dynamic variable u) came below a threshold
(ð1=Lx × LyÞ

P
i;juij < 0.001). For the determination of

hTi from NChðtÞ an initial amount of time, which is equal to
10 spiral periods, was discarded. The average transient
lifetime was determined for all three models (AP, FK1,
FK2) for the different domain sizes.
Figure 2(a) shows NChðtÞ exemplary for FK1 and a

domain size of Lx × Ly ¼ 100 × 100. An exponential
scaling of the average transient lifetime with the domain
size (area ¼ Lx × Ly) in 2D was confirmed in all three
models [Fig. 2(b) for FK2 and AP, and Fig. 2(d) for FK1,
respectively]. In fact, supertransients of type-II were
identified with coefficients γAP ¼ 1.3843� 4.2 × 10−3,
γFK1¼1.2274�6.9×10−4, γFK2 ¼ 0.8813� 2.8 × 10−2,
aAP¼4.5851×10−6�8.6×10−11, aFK1 ¼ 4.4123 × 10−5�
1.3 × 10−10 and aFK2 ¼ 7.1151 × 10−4 � 1.5 × 10−6. It is
noteworthy, that the actual scaling parameter γ is not only
determined by the choice of the cell model (Aliev-Panfilov,
Fenton-Karma) but also sensitively depends on the choice
of model parameters.
The identification of supertransients of type-II can

also be confirmed in the underlying dynamics of the
investigated excitable systems: The chaotic dynamics are

(a) (b) (c)

FIG. 1. Snapshots of the spatiotemporal dynamics for the three
investigated systemsAP (a), FK1 (b), and FK2 (c) (domain sizes
Lx × Ly of 80 × 80, 100 × 100 and 150 × 150, respectively).
(White) circles indicate the phase singularities (organizing
centers) of the spiral waves.

(a) (b)

(c) (d)

FIG. 2. Chaotic transients and the average lifetime in 2D
simulations. In subplot (a) NChðtÞ is shown over time [measured
in spiral rotations (Tsp)] for an exemplary domain size of
Lx × Ly ¼ 100 × 100 using the FK1 model. The average tran-
sient lifetime hTi ≈ 1=κ can be extracted by fitting the exponen-
tial decay [(red) dashed line]. In (b) the average transient lifetimes
are plotted for various system sizes for both models: AP (open
square) and FK2 (right pointed triangle). For FK1, the lifetime
distribution of phase singularities for a simulation domain of
Lx × Ly ¼ 100 × 100 was determined (c) as well as the mean
number of phase singularities NPS (filled square) and the average
transient lifetime hTi (open circle) for various area sizes (d).
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mainly determined by spiral waves in two-dimensional
(2D) systems or scroll waves in three-dimensional (3D)
systems. The number of the organizing centers of these
waves fluctuates during a chaotic episode due to pairwise
creation or annihilation of phase singularities (tips of the
spirals), wave breakup, or collisions with the boundary.
The dynamics terminate (without any impact from out-
side), if at some point in time every spiral wave annihilates
with another spiral wave or the boundary. Only plane
waves remain without any phase singularity and the
excitation dies out; thus, the chaotic episode has finished
and the system remains in the (stable) attractor given by a
nonexcited medium (see the Supplemental Material for
the course of such a self termination [14]). During such
an episode, the number of spiral waves, or their corre-
sponding phase singularities (which play the role of the
“defect” here), does not decrease over time, but fluctuates
due to the creation and annihilation mechanisms. The
lifetime distribution of a single phase singularity for
FK1 and a simulation domain of Lx × Ly ¼ 100 × 100
is shown in Fig. 2(c), indicating that the dynamics are not
dominated by single long-living spiral waves but char-
acterized by a constant production and annihilation of
relatively short-living phase singularities. As already
noted by Strain and Greenside [15], the final collapse
of the system occurs then, abruptly, and no obvious
indications for the upcoming termination can be found.
For exemplary time series of the number of phase
singularities NPS and the pseudo ECG before the collapse
of the dynamics, as well as details of the detection of the
phase singularities, see [10].
When the simulation area is extended, the mean

number of phase singularities (and thus the number of
spiral waves) increases linearly [Fig. 2(d)], which is in
accordance with the findings that spiral waves occupy finite
amounts of the area, also called “tiles” [5,16]. The lifetime
distribution of single spirals does not change with the
system size (mean lifetime of spiral waves hTPSi ¼
4.49; 4.37; 4.48; 4.45; 4.54; 4.53 Tsp for Lx ¼ 80, 90,
100, 110, 120, 130). Using a Markovian approach for
the dynamics (each state characterized by the number of
phase singularities), and assuming that the transition
probability to a state with no spiral waves is decreasing
exponentially with the number of spiral waves (which
grows linearly with the system size), one can reasonably
deduce the exponential scaling of the transient lifetime with
the system size here [17]. From this point of view, the
scaling parameters a and γ can be related to the lifetime of
the spiral waves and the number or the size of single spiral
waves compared to the domain size.
Apart from the average transient lifetime, which is a

characteristic feature of the transient nature, we focus in the
following on the chaotic properties of the dynamics. In
systems which exhibit chaotic transients, an initial con-
dition after a finite amount of time will end up in another
attractor (which actually can also be chaotic). However,

dynamic invariants that are used for “classical” (persistent)
chaotic systems can, in some cases, also be used for
characterizing the transients. For example, Lyapunov
exponents can, in practice, also be calculated in systems
with finite chaotic episodes. Because Lyapunov exponents
are mathematically defined on an infinite time scale,
we refer to “finite time Lyapunov exponents” when we
speak of Lyapunov exponents of chaotic transients [12].
Technically, there is no difference in the calculation
scheme, except that the calculation stops before the self
termination of the dynamics. However, in practice this is
only meaningful if the transients provide enough time for
the convergence of the estimates of the exponents.
The Lyapunov spectrum provides information about how

chaotic the dynamics are before self termination. We
investigated how these properties of the dynamics change
with an increasing system size (details can be found in
the Supplemental Material [10]). Figure 3(a) depicts the
Lyapunov density ([12,18]) (jth Lyapunov exponent versus
j divided by system size N ¼ Nx × Ny). The Lyapunov
exponents for different system sizes clearly align with each
other, which implies that the number of positive or negative
Lyapunov exponents scales with the system size (exten-
sive chaos).
Furthermore, in order to assess the chaotic dynamics,

the Kaplan-Yorke dimension DKY was calculated for
various system sizes based on the Lyapunov spectrum
[19]. Figure 3(b) shows that the Kaplan-Yorke dimension
DKY grows linearly with the system size (triangles). Since
the number of phase singularities (equivalent to the
number of spiral waves) also grows linearly [Fig. 2(d)],
we can identify a mean DKY per spiral wave of
≈7.77� 0.12. Although studies indicate that parts of
the degrees of dynamic freedom in spatiotemporal chaos
in excitable media are not related to the defects (spiral
cores) [20], we can conclude that the degree of chaos

(a)

(b) (c)

FIG. 3. The chaotic features of the dynamics using FK1.
Analysis of the Lyapunov density for various system sizes (a),
Kaplan-Yorke dimension DKY (filled triangles) versus the system
size (b) and DKY versus NPS (c).
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(Kaplan-Yorke dimension) can be estimated by the num-
ber of spiral waves permitted by the respective system size
[see Fig. 3(c)].
Similarly to [21], we also found that noise has an impact

on the average lifetime. Details regarding the results can be
found in the Supplemental Material [10].
As a next step, the average transient lifetime was also

determined in 3D domains. In three dimensions, spiral
waves correspond to scroll waves, whereas the former
pointlike phase singularities that mark the tip of a spiral
wave correspond to filamentlike one-dimensional curves in
3D. Scroll waves can be considered as “stacked spiral
waves,” where the curvature and the meandering behavior
of the filament are essential for the dynamics. In particular,
we are interested in how the average transient lifetime
changes when extending the 2D dimensional domain step
by step to 3D. For this purpose, the initial 2D simulations
with Lx × Ly ¼ ð80hÞ × ð80hÞ were gradually extended
in the third dimension Lz (from now on denoted as
“thickness”). As in [22], in all three models, a critical
thickness in the third dimension could be established up to
which the average transient lifetime remains approximately
constant (see Fig. 4). Above this threshold, the average
transient lifetime increases exponentially.
In order to find the dynamic origin for this critical

thickness, the filaments (the organizing centers) of the
scroll waves were also detected. Details about the detection
of the filaments can be found in the Supplemental Material
[10]. In Figs. 4(a), 4(c), and 4(e) the average transient
lifetime hTi is compared to the average number of filaments,
Nfila, for each thickness of the domain. In all three models,
the critical thickness in the average transient lifetime is also
pronounced in terms of the number of filaments NFila. In
addition, the average length of the filaments per thickness
(ALF=Lz) was also determined. In the case of straight
filaments only aligned along the third dimension of the
system, this quantity is equal to one. Thus, deviations from a
constant value provide information about deviating filament
alignment. In “thin” systems, the domain only provides
enough space for filaments aligning along the third dimen-
sion (thus, the system is quasi-2D). The approximately
constant ratio ALF=Lz for lower thicknesses indicates that
most filaments are aligned along the third dimension
[crosses in Fig. 4(b) (AP), 4(d) (FK1), and 4(f) (FK2)].
In larger domains, for AP and FK1, the critical thickness
can also be recognized by ALF=Lz (smeared out for FK2).
However, for bigger systems, ALF=Lz saturates in all three
models (or even slightly decreases for AP and FK1),
indicating that the maximum (average) filament length is
(model dependent) confined. The presence of the critical
thickness in both quantities (Nfila and ALF=Lz) suggests
that above the critical thickness, filaments break up (due to a
negative filament tension in all models [9,23]). This
transition from vertically arranged filaments to actual scroll
wave turbulence above a critical thickness of the substrate

was also observed by Dierckx et al. [24]. However, the
saturation of ALF=Lz leads to the conclusion that the
increase of the average transient lifetime is mainly based
on the pure number of filaments (equivalent to the number
of spiral waves in 2D) and does not depend significantly on
the length of the filaments. In order to investigate finite size
effects, all simulations were repeated in the case of FK1
with a doubled resolution [h → h=2, small circles and
crosses in Figs. 4(c) and 4(d)]. Quantitative differences in
the absolute numbers (e.g., Nfila) are visible, but the main
qualitative findings (in particular the critical thickness) are
robust under a doubling of the spatial resolution.
We have shown that chaotic transients are a robust

phenomenon in excitable media and occur similarly in
different numerical models (Aliev-Panfilov model and
Fenton-Karma model) of excitable systems with different
underlying mechanisms for spiral wave breakup. The
average lifetimes of chaotic transients depend on the
system size, in both two and three dimensions, and are
influenced by the addition of low amplitude noise. We
found in the investigated excitable systems, that spiral or
scroll waves, and their corresponding phase singularities or
filaments, are the main topological objects that promote the
duration of chaotic episodes.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Chaotic transients in 3D domains. A critical thickness in
the third dimension of the simulation grids exists in all three
models, below which the average transient lifetime remains
approximately constant [AP: (square) in (a) and (b), FK1: (circle)
(small circles for simulations using the doubled resolutions) in (c)
and (d) and FK2: (right-pointing triangle) in (e) and (f)]. The
dynamic origin of the critical thickness concerning the average
transient lifetime can be identified with the average number of
filaments (Nfila) in the system, which is rapidly increasing above
the critical thickness [(crosses) in (a) (AP), (c) (FK1, small
crosses for simulations using doubled resolutions) and (e) (FK2)].
The average length of the filaments divided by the thickness
(ALF=Lz) also exhibits the critical thickness, but saturates for
larger domains [(crosses) in (b) (AP), (d) (FK1, small crosses for
simulations using the doubled resolutions) and (f) (FK2)].
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Our findings agree with the general notion that larger
heart muscle volumes increase the risk of cardiac arrhyth-
mias and related morbidity and mortality [25–27]. Our
results suggest that larger volumes can possibly contain a
larger number of phase singularities, and therefore, not only
increase the transient lifetimes, but also enhances the
spatiotemporal complexity of the chaotic dynamics, which
may have an impact on the success rates of defibrillation
attempts [28,29]. In particular, the role of the critical
thickness investigated in the 3D simulations may be of
further interest in this context. Cardiac hypertrophy, for
instance, is accompanied by an increase in heart muscle
volume. Even though the overall number of cardiac cells
does not change in hypertrophic hearts, other factors, such
as altered excitation thresholds and conduction velocities,
may lead to an effective scaling of the size of the excitable
system with respect to the sizes of dynamic structures like
spiral or scroll waves present in the system. In fact, from this
point of view, the administration of certain antiarrhythmic
agents could be interpreted as a change of properties of the
cardiac tissue in order to promote early self-termination of
cardiac arrhythmias [30].With respect to transient lifetimes,
phenomenological modeling could provide a generalized
framework for investigating the influence of cardiac sub-
strate changes onto the persistence of cardiac arrhythmias.
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