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The relative phase of the order parameters in the collision of two condensates can influence the outcome
of their collision in the case of weak coupling. With increasing interaction strength, however, the initially
independent phases of the two order parameters in the colliding partners quickly become phase locked, as
the strong coupling favors an overall phase rigidity of the entire condensate, and upon their separation the
emerging superfluid fragments become entangled.
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Since the gauge symmetry is spontaneously broken in
superfluids, it is reasonable to wonder under what con-
ditions the relative phase of two superfluids is physically
relevant. The Josephson effect [1,2], experiments with cold
Bose or Fermi atoms [3–8], and the superfluid fragments
emerging from nuclear fission [9–11] are just a few
examples where that is the case. As we will discuss here,
there are other situations when one would, however, expect
that the relative phase of two condensates is physically
irrelevant. However, the emerging overall picture of the
role of the relative phase of two condensates appears to be
more complex than envisaged so far. Recently Magierski,
Sekizawa, and Wlazłowski (MSW) [12] reported on a
rather surprising observation concerning the role the pair-
ing field plays in the collisions of two heavy ions at
energies near the Coulomb barrier. MSW observed a very
strong dependence of the properties of the emerging
fragments on the relative phase of the pairing condensates
in the initial colliding nuclei. In a somewhat related study of
20Oþ 20O [13], the reported effect was rather weak, a result
confirmed in the similar case of 44Caþ 44Ca [14], due to
the small number of nucleons above the closed shell. The
amplitude of the pairing field Δ in nuclei is of the order of
1 MeV, which is significantly smaller than the magnitude
of the normal single particle field, which is of the order of
50 MeV. The character of the nuclear pairing correlations is
recognized in literature of being of the Bardeen-Cooper-
Schriefer (BCS) type [15], a theory which describes weak
coupling pairing with Cooper pairs with sizes significantly
larger than the average separation between fermions. The
gain in binding energy due to pairing correlations, called
condensation energy Econd ¼ −Nð0ÞjΔj2=2, can hardly be
greater than perhaps a few MeV. MSW report, however,
that in the collision of 240Pu on 240Pu near the Coulomb
barrier pairing effects can lead to changes in the total
kinetic energy of the emerging fragments of up to 20 MeV
and that the apparent height of the fusion barrier could be
changed by 10 MeVor even more. These dramatic changes,
with an energy significantly higher than the magnitude of
the total pairing condensation energy, were correlated by

MSWwith the relative phase of the pairing fields in the two
colliding partners prior to collisions.
The gauge symmetry breaking bears similarity with the

rotational symmetry breaking in the case of deformed
nuclei, when their relative orientations plays a noticeable
role in heavy-ion fusion reactions and various decays.
The MSW results, obtained by solving the time-dependent
density functional theory (TDDFT) equations, can be
reproduced semiquantitatively using a simple Ginzburg-
Landau approach [16,17], or the formally equivalent static
Gross-Pitaevskii (GP) description [18,19]. When the two
nuclei touch, the phase of the condensate can change across
the contact region, as in a domain wall, in a manner
superficially similar to the tunneling current in a Josephson
junction [1,2], albeit in the absence of a barrier.
In the presence of pairing correlations the ground state

of a nucleus is a Bose-Einstein condensate (BEC) of
Cooper pairs, which in theory is accurately described in
the grand canonical ensemble, where only the average
particle number is specified. The phase of the order
parameter ϕ̂ is conjugate to the particle number N̂, and
thus in a system with well-defined particle number the
phase is undefined [20,21]. However, as Anderson points
out [22], in a bucket of liquid helium below the λ point “ϕ
has become a classical variable, … any future experiment
will be interpretable as though ϕwas fixed.” This is also the
prevalent approach in describing nuclei with well-defined
pairing correlations, when the effect of particle projection is
small. One can thus reasonably ask a common question in
condensed matter physics, “Can a nucleus have a well-
defined phase of the condensate with respect to another
nucleus?” Since the total wave function of the two nuclei
prior to their interaction is merely a product of two
independent wave functions, one would expect that the
interaction between two nuclei cannot depend on the
phases of each initial wave function. A (relative separation)
coordinate dependence of the phase of the pairing field
indicates the presence of a current. The phases of the
pairing fields can be changed by arbitrary and independent
gauge transformations in each partner prior to the moment
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the two nuclei touch and, thus, one can generate a phase
gradient in the “neck.” An objection raised by Bertsch in
discussions was that initial nuclei have well-defined proton
and neutron numbers, unlike the anomalous densities that
are the central objects in a DFT approach, and the phase of
the wave function of each nucleus prior to the collision
should be physically irrelevant. Clearly, a similar argument
would not be accepted in the case of deformed nuclei, as a
number of observables are impacted (α-decay penetrability,
heavy-ion fusion cross sections, etc.). This kind of argu-
mentation began at the inception of quantum mechanics,
and many have wondered about similar problems; see
Anderson [22] and the follow-up spirited discussion. As
Anderson writes, “if the experimenter now cools down two
entirely different, non-communicating buckets of liquid
helium from T > Tλ → T ≈ 0, … upon opening an orifice
between the two, would see initially with equal probability
any fixed value of the phase difference, and thereafter no
experiment he tried could recover the components of the
wave-function which started out with different relative
phases. He would not see zero interference current, … .”
This situation corresponds theoretically to a fragmented
condensate [23], and the inability of the experimenter to
recover the initial state is due to the fact that the two buckets
became macroscopically entangled after being in contact for
some time. Macroscopic entanglement of up to hundreds to
millions of particles have been put in evidence experimen-
tally [24–28]. It is crucial to recognize that there are two
qualitative steps in Anderson’s gedanken experiment: the
creation of the initial state and the subsequent emergence
of the final state. This is also the situation in the MSW
simulations, and the natural question arises of why these
authors did not observe the outcome conjectured in
Anderson’s gedanken experiment, as the outcome of their
collisions showed a strong dependence on the initial relative
phase of the condensates, unlikewhatAnderson conjectured.
We are not aware, however, of any experiments in which the
dependence on the strength of the coupling on the outcomeof
a collision and of the entanglement have been studied.
There is, however, another qualitatively different situa-

tion, relevant to experiments performed in cold gases [3–8]
or to superfluid fragments emerging from nuclear fission
[9–11]. This happens when one cools down a bucket of
helium from above the λ transition, and subsequently
separates it into two parts kept always close to T ≈ 0 and
reunites them after they had different histories, and the two
parts remain macroscopically entangled at all times [22]. In
this situation, the relative phase of the two buckets is always
rather well defined, but the particle numbers in the two
buckets are not. (We will not discuss here the role the phase
diffusion can play).
There will definitely be increasingly more studies of

colliding superfluid nuclei and other systems in the future
performed within the only practical microscopic framework
available so far, the TDDFT. A correct interpretation of
such numerical simulation results and a correct method
to evaluate observables are stringent elements of our

theoretical tools, tools which are still not yet ascertained.
Nuclei contain many particles, are essentially macroscopic
objects, and as Anderson has also noted [22], “… the central
problem ofmeasurement theory is not the quantummechan-
ics of atoms, which is simple and easy, but the fact that
macroscopic everyday objects are very difficult indeed for
the quantum theory to deal with properly.”Many properties
of nuclei (liquid drop mass formula, surface tension,
compressibility, symmetry energy, hydrodynamics, collec-
tive motion, rotation, symmetry breaking, transport coef-
ficients, etc.) can be and are often treated quite accurately
using concepts characteristic for macroscopic systems.
In order to shed light on MSW’s very startling obser-

vation, that the relative phase of the pairing fields in two
colliding nuclei can have a dramatic role in the collision
process, we will turn at first to a simpler system, in which
the role of the relative phase of two condensates can be
easily studied. In the presence of pairing correlations,
nuclei can be treated as a BEC of interacting Cooper pairs,
as in the case of electrons in superconductors [15], and the
total wave function can be represented as an antisymme-
trized product of Cooper pair wave functions. In the case of
a weakly interacting Bose system at zero temperature, a GP
equation is extremely accurate [29]. In the GP approxima-
tion a boson field operator ψ̂ðrÞ is replaced with its
nonvanishing average ψðrÞ ¼ h0jψ̂ðrÞj0i [a classic exam-
ple of U(1) broken gauge symmetry] and the accuracy of
the approximation is of order ∼1=

ffiffiffiffi
N

p
, where N is the total

number of bosons. A BCS fermionic condensate is a system
of weakly interacting Cooper pairs or bosons, and quali-
tatively a GP equation is appropriate and has been used
numerous times in the past. The weakness of the interaction
is typically characterized by the ratio of the pairing gap to
the Fermi energy Δ=εF ≪ 1. In the weak coupling limit, all
Cooper pairs have a zero momentum, as in a BEC.
Typical BEC systems have all particles in one cloud and

the one-body density matrix acquires the form

ρðr1; r2Þ ¼ h0jψ̂†ðr1Þψ̂ðr2Þj0i ⇒ n0ψ�ðr1Þψðr2Þ;

when jr1 − r2j → ∞, and there is only one eigenvector with a
macroscopic eigenvalue n0 ¼ OðNÞ, a situation known as the
off-diagonal long-range order [16,30–32]. It is possible to
have a fragmented BEC system [23], when two or more
eigenvalues of the one-body density matrix ρðr1; r2Þ are
macroscopically large. This is the case of two BEC clouds
with particle numbers N1 and N2 in two spatially well
separated potential trapsVkðrÞ,

R
d3rjψkðr;tÞj2¼Nk,k¼1, 2,

iℏ _ψkðr; tÞ ¼ −
ℏ2

2m
Δψkðr; tÞ þ VkðrÞψkðr; tÞ

þgjψkðr; tÞj2ψkðr; tÞ ¼ μkψkðr; tÞ ¼ μkϕkðrÞe−iμkt=ℏ: ð1Þ

Let us consider now this fragmentedBEC,when their initially
spatially well-separated trapping potentials are moving
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towards each other, and their combinedwave function at times
before the two clouds come into contact is naturally given by

Ψðr; tÞ ¼ ψ1ðr; tÞ þ eiαψ2ðr; tÞ; ð2Þ

ψkðr; tÞ ¼ ϕkðr − rk − uktÞeimuk·r=ℏ−iμkt=ℏ−imu2
kt=2ℏ; ð3Þ

withVkðrÞ → Ukðr; tÞ ¼ Vkðr − rk − uktÞ and eiα arbitrary.
Using Ψðr; tÞ one can construct a coherent state
exp½τ R d3rΨðr; tÞψ̂†ðrÞ�j0i, and the fragmented BEC state
is obtained only after a specific particle projection is per-
formed; see the discussion below and in connection with
Eq. (4) and the Supplemental Material (SM) [33]. We will
assume that the velocities uk are significantly smaller in
magnitude than the speed of sound [29] c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjΨðr; tÞj2=m

p
evaluated in the central part of the cloud, and therefore
superfluidity is not endangered. At all times this combined
wave function satisfies the time-dependent GP equation with
Uðr; tÞ ¼ U1ðr; tÞ þ U2ðr; tÞ:

iℏ _Ψðr; tÞ ¼
�
−
ℏ2

2m
Δþ gjΨðr; tÞj2 þUðr; tÞ

�
Ψðr; tÞ:

Before contact each component of the total wave function
ψkðr; tÞ, see Eq. (1), satisfies its own time-dependent GP
equation (1) with VkðrÞ → Ukðr; tÞ. The arbitrary phase
expðiαÞ can arguably influence the dynamics if g ≠ 0.
This is the phase in one of the two cases of liquid helium
buckets discussed byAnderson [22]. Unlike the overall phase
of the many-body wave function, this phase cannot be
removed now, similarly to the relative orientation of two
colliding deformed nuclei. In the case of two separated
condensates, the overall order parameter is the sum of the
two separated order parameters, similarly to magnetization,
for example. (The action of the magnetic field on the spin
coordinate of a fermion is formally identical to the action of
the pairing field on the two components of the fermionic
quasiparticle [34].) Magnetization is created by electric
currents and magnetic moments, and when one brings two
magnets into proximity, the two magnetic fields add up, even
though the many-body electron wave functions for the two
separated magnets are multiplied to each other. As in the case
of a magnetic field, where the relative orientation of two
magnetic fields is important, and in the case of the complex
pairing field, the relative phase of the two fields is important,
as is in the case of Josephson junctions, too. This relative
phase is also arbitrary, but this relative phase can be controlled
in some instances. In the vicinity of an isolated cloud one can
apply for a finite interval of time a constant potential over the
isolated cloud, a procedure performed in the case of cold
atoms in experiments, equivalent to performing a local gauge
transformation, and thus one can change the relative phase of
two clouds [4–8].
By analyzing both the GP equation, see SM [33], and

the collision of superfluid nuclei, we arrived at a totally
unexpected and surprising result, that the strength of the

interaction g plays a qualitative role in the dynamics. By
increasing the strength of the interaction from zero (cor-
responding to the case of noninteracting bosons or absence
of pairing correlations in nuclei) to a relatively large value,
the character of the collision changes dramatically, but in a
continuous manner.
We observe the establishment of a common phase of the

combined condensate for large values of the coupling
constant, which clearly can be attributed to the phase rigidity
in superfluids [16,17,20,22,35]. While the two partners are
in contact, the phase of the condensate becomes spatially
constant over the entire system, and the phase gets locked.
We illustrate the phase locking mechanism for both Fermi
and Bose superfluid systems: with the collision of two
superfluid nuclei described within the extension of TDDFT
formalism to superfluid fermionic systems [36] by changing
the strength of the pairing correlations, see Fig. 1, and with
the case of the collision of two BECs with relevant results in
the SM [33].
One can limit the analysis to a one-dimensional model as

only matter, momentum, and energy transfer between two

FIG. 1. The evolution of the phase of the pairing field (time runs
top to bottom) in the head-on collision of 120Snþ 120Sn [9–11],
simulated with the phenomenological energy density functional
SLy4 and pairing as described in Ref. [37]. The right-hand and
the left-hand columns correspond to a realistic or artificially
increased pairing field strength, respectively. The upper and
lower half of each frame corresponds to an initial phase difference
between the two initial pairing condensates of 0 and π, respec-
tively. Even though the pairing field magnitudes are constant
before the colliding nuclei come into contact, their phases change
in time and space (first two top frames); see Eq. (3). The phase
locking of the pairing field is clearly manifest after fusion in the
left-hand column, but absent in the right-hand column.

PRL 119, 052501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

052501-3



colliding partners along the line joining the two partners
(which can rotate in space though) are controlling most of
the dynamics, similarly to the case of the Josephson
junction in the case of superconductors, when only dynam-
ics across the junction is typically analyzed. In the absence
of the interaction (g≡ 0), the GP equation is linear, and
each wave function ψkðr; tÞ satisfies independently the
Schrödinger equation

iℏ _ψkðr; tÞ ¼ −
ℏ2

2m
Δψkðr; tÞ þ Uðr; tÞψkðr; tÞ;

and after the two potentialwells have passed each other, each
wave functionψkðr; tÞwill split in between the two potential
wells. Obviously, the linear combination of the wave
functions Ψðr; tÞ ¼ ψ1ðr; tÞ þ eiαψ2ðr; tÞ, which satisfies
the same Schrödinger equation, depends on the relative
phase. While for weak coupling g the dynamics is α
dependent, when the strength of the interaction g is gradually
increased, the dependence of the final outcome on the
relative phase α becomes weaker and weaker the stronger
the interaction gets, and the two cases α ¼ 0 and α ¼ π in
their final state become almost identical; see Fig. 1 for nuclei
in 3D and the SM for bosons [33]. When the coupling
constant is sufficiently large, the two boson clouds penetrate
each other and their final states are relatively little affected
irrespective of the value of α, and both clouds emerge with
the initial number of particles practically unchanged and
with very small excitation energies as well [33]. The role of
the particle-particle interaction is to lead upon contact to a
very rapid phase locking between the two condensates after
which the properties of the final state depend veryweakly on
the phase expðiαÞ. The strength of the interaction g controls
the speed at which the information is transmitted throughout
the cloud. In the case of strong coupling, after the relatively
short time needed to send “messages” between the two
partners, the properties of the emerging final state are largely
α independent and the two clouds become completely
entangled upon separation. The total wave function corre-
sponds in this case to a coherent state in the particle number
difference, N− ¼ N1 − N2, and to a macroscopically
entangled state of two large objects. This conclusion is in
agreement with Anderson’s conjecture [22] concerning the
inability of an experimenter to recover the initial relative
phase of the condensates α after establishing the contact
between the two independently cooled liquid helium buck-
ets from above Tλ. This also clarifies the content of
Anderson’s conjecture that only when the superfluid corre-
lations are “strong” enough the role of the initial relative
phase is erased. This is also consistent with the generalized
phase rigidity due to the term in the Ginzburg-Landau
equation nsℏ2j∇ϕj2=2m (where ns is the superfluid density)
in the free energy of superfluids [16,17,20,22,35], which is
an emerging term, whose presence and strength are dictated
by the interactions, and which is absent in noninteracting
systems.

This dependence on α of the properties of the emerging
fragments in the case of “weak” superfluid correlations
reflects particle number difference fluctuations between the
two initial partners; see also SM [33]. The combined wave
function of two superfluid nuclei (with even particle
numbers), depending on two arbitrary gauge angles τ
and α, can be written as [38] (here, for simplicity for
one kind of nucleons only)

jΨðτ; αÞ ¼
Y
k

½uk þ ei2τei2αvka
†
ka

†
k̄
�

×
Y
l

½ul þ ei2τe−i2αvla
†
l a

†
l̄
�j0i; ð4Þ

where k and k̄ and l and l̄ denote pairs of time-reversed
states in the two nuclei and uk;l and vk;l are the corre-
sponding amplitudes of the Bogoliubov-Valatin quasipar-
ticles. IntegratingΨðτ; αÞ over τ with the weight e−iτNþ will
select the wave function with the total particle number
Nþ ¼N1þN2. Integrating Ψðτ; αÞ over α with the weight
e−iN−α will select the exact particle differenceN−¼N1−N2

between the two nuclei. In the case of weak coupling, an
additional projection over the relative phase α is required to
ensure that the particle number difference between the two
initial partners has the expected value, namely, exactly zero
(ΔN ≡ 0) in the case of two identical nuclei; see also
SM [33]. One can expect that total kinetic energy and
fusion rates distributions would becomewider in the case of
superfluid colliding nuclei.
When comparing our simulations of 240Pu fission [37]

with realistic pairing interactions with simulations in which
the pairing field was artificially increased to ≈3–4 MeV
[9–11], we observed a similar transition to a phase locking
pattern: realistic nuclear pairing strength is relatively weak,
the phase locking does not typically occur on the way from
saddle to scission, and the phase and the magnitude of the
pairing fields fluctuate strongly in both space and time. In
the case of strong pairing [9–11], even though the time
from saddle to scission is about 10 times shorter, the
evolution is almost identical to the dynamics of an ideal or
perfect fluid and the fission fragments emerge strongly
entangled. While one might naively expect a faster rate of
energy transfer from collective to intrinsic degrees of
freedom, the fluctuations of the pairing field are greatly
suppressed (due to larger gaps and larger critical velocities)
and the evolving fissioning nucleus stays cool.
In conclusion, we have established that the initial relative

phase of two colliding condensates plays an increasingly
smaller role in the case of strong interactions, when a phase
locking over the entire system is established fast (unless the
entire system is very extended and the signal propagation
time is large as well), and after the separation the final
macroscopic (large) fragments emerge entangled.
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