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We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps
an integral into pairs of integrals obtained from a master integrand and a corresponding master contour.
This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, but applies more
generally, e.g., to hypergeometric functions. The coaction also applies to generic one-loop Feynman
integrals with any configuration of internal and external masses, and in dimensional regularization. In this
case, we demonstrate that it can be given a diagrammatic representation purely in terms of operations on
graphs, namely, contractions and cuts of edges. The coaction gives direct access to (iterated) discontinuities
of Feynman integrals and facilitates a straightforward derivation of the differential equations they admit. In
particular, the differential equations for any one-loop integral are determined by the diagrammatic coaction
using limited information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts.
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Feynman integrals are central to perturbative quantum
field theory (QFT), and it was realized early on that their
analytic structure and discontinuities are directly connected
to the fundamental concept of unitarity [1,2]. Despite their
importance in a broad range of applications over decades,
the explicit computation of Feynman integrals is still
difficult, sometimes prohibitively so. Controlling the ana-
lytic structure of Feynman integrals is key to precision
collider physics, which requires fast evaluation of scatter-
ing amplitudes with an increasing number of loops and
legs. Developing a better understanding of the analytic
structure of Feynman integrals can both help in devising
new methods of computing them and shed light on
fundamental aspects of QFT.
Feynman integrals are not only fundamental to QFT, but

they are also deeply connected to certain areas of modern
mathematics. This connection, in turn, has recently led to
major advances in precision computations in particle
physics. Instrumental to this progress was the realization
that large classes of Feynman integrals can be evaluated in
terms of so-called multiple polylogarithms (MPLs) [3,4], a

class of special functions that generalize the classical
logarithm and polylogarithms to many variables.
Understanding the mathematics of MPLs and their alge-
braic structure has led, for example, to new ways of
evaluating certain classes of integrals in an algorithmic
way [5–10], to efficient approaches to solving differential
equations [11], and to drastic simplifications of compli-
cated analytical results for Feynman integrals [12]. An
important aspect of MPLs is that they can be endowed with
a so-called coaction [3,13–17], an operation which maps a
given MPL into pairs of simpler MPLs, effectively captur-
ing the algebraic and analytic complexity of these
functions.
However, not every Feynman integral can be evaluated

in terms of MPLs. Indeed, generalizations to elliptic curves
arise beyond one loop [18–29], and the space of relevant
functions has yet to be fully explored. It is therefore
important to investigate the algebraic structure of
Feynman integrals, and the functions they evaluate to,
beyond the context of MPLs. In this Letter, we take a step in
this direction: we propose a coaction that generalizes the
one onMPLs to a larger class of integrals and we explore its
consequences for one-loop Feynman integrals in dimen-
sional regularization. In this case, our proposed coaction
can be cast in a remarkably elegant form through simple
operations on graphs. We give sample applications of our
coaction to the study of Feynman integrals. In particular,
we show how to obtain a compact representation of the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PRL 119, 051601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

0031-9007=17=119(5)=051601(6) 051601-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevLett.119.051601
https://doi.org/10.1103/PhysRevLett.119.051601
https://doi.org/10.1103/PhysRevLett.119.051601
https://doi.org/10.1103/PhysRevLett.119.051601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


complete set of differential equations satisfied by one-loop
integrals with an arbitrary number of scales.
A coaction on integrals.—Consider a differential form ω

which we assume to be closed (so that ω defines a
cohomology class), and consider a contour γ such that
the integral of ω over γ converges. We propose the
existence of the following coaction on such integrals:

Δ
�Z

γ
ω

�
¼

X
i

Z
γ
ωi ⊗

Z
γi

ω; ð1Þ

where the sum runs over a basis ωi of differential forms,
called master integrands. The contours γi are called master
contours, and they are dual to the basis elements ωi in the
following sense:

Pss

�Z
γi

ωj

�
¼ δij; ð2Þ

where Pss denotes a projector onto the subspace of “semi-
simple” objects, defined as those objects x on which the
coaction acts trivially as ΔðxÞ ¼ x ⊗ 1. Semisimple objects
include all rational and algebraic functions [30], certain
transcendental numbers such as 2πi [15], and complete
elliptic integrals [31]. In contrast, examples of non-
semisimple objects include the classical logarithm and poly-
logarithm functions, except where they evaluate to powers of
2πi. The second integral on the right-hand side of Eq. (1) is
defined only modulo the branch cuts of the integral.
With these definitions, we have checked that Eq. (1)

satisfies the axioms of a coaction, which is an operation
defined as follows. Let H be a bialgebra with a coproduct
map δ∶H → H ⊗ H, which is required to be coassociative,
i.e., ðδ ⊗ idÞδ ¼ ðid ⊗ δÞδ, where id denotes the identity
map. Considering a vector space A, one may further define
a coaction map Δ∶A → A ⊗ H such that ðΔ ⊗ idÞΔ ¼
ðid ⊗ δÞΔ. The coaction satisfies additional axioms, which
are, however, irrelevant for our discussion. For a peda-
gogical introduction to some of these concepts, see
Refs. [17,32–36]. In the context of Eq. (1), A is the vector
space spanned by the integrals, while H corresponds to
integrals defined modulo their branch cuts.
One can verify that Eq. (1) reduces to the coaction on

MPLs [3,15] when acting on this class of functions. In this
case, the master integrands ωi are differential forms with a
subset of the poles of ω. For each ωi, we define a
corresponding master contour γi by encircling the same
subset of poles and dividing by a factor of 2πi for each pole.
Hence, the right entries in Eq. (1) are obtained by taking
residues of ω at the selected poles. The coaction of Eq. (1)
generalizes the one on MPLs to a larger class of functions
while preserving some of its most important properties. In
particular, it interacts with discontinuities and differential
operators in the same way as the MPL coaction [17,30]:

ΔDisc ¼ ðDisc ⊗ idÞΔ and Δ∂ ¼ ðid ⊗ ∂ÞΔ: ð3Þ
As an example, Eq. (1) predicts the coaction on certain
classes of hypergeometric functions. In the simple case of a

Gauss hypergeometric 2F1 function, the master integrands
are two independent solutions to the hypergeometric differ-
ential equation, while the correspondingmaster contours are
two straight lines. In Feynman integral calculations, hyper-
geometric functions appear when computing integrals in
dimensional regularization, and we are typically interested
in their Laurent expansion around small values of the
dimensional regulator ϵ. In certain cases, the coefficients
of the Laurent series are MPLs, see, e.g., Refs. [37–40], and
we have checked that the prediction of Eq. (1) for the
coaction prior to expansion reproduces the same result as
acting with the MPL coaction on the Laurent coefficients.
Details will be given in a forthcoming publication.
In the remainder of this Letter, we explore the conse-

quences of Eq. (1) for one-loop Feynman integrals in
dimensional regularization. We demonstrate that in this
case Eq. (1) has a purely diagrammatic interpretation: the
coaction of any one-loop Feynman integral can be
expressed in terms of other Feynman integrals. The latter
correspond to graphs that are obtained from the original
one through two types of graphical operations, namely,
contractions and cuts of its edges.
A coaction on one-loop (cut) integrals and graphs.—All

one-loop integrals with numerators can be reduced to scalar
integrals with a unit numerator. Integrals with different
powers of the propagators are related by integration-
by-parts (IBP) identities [41,42], and integrals in dif-
ferent spacetime dimensions by dimension-shift identities
[43–45]. It is therefore sufficient to discuss a basis of one-
loop integrals of the form

~Jn ¼
eγEϵ

iπD=2

Z
dDk

Yn−1
j¼0

1

ðk − qjÞ2 −m2
j
; ð4Þ

where γE ¼ −Γ0ð1Þ is the Euler-Mascheroni constant, n is
the number of propagators, and the number of spacetime
dimensions is accordingly chosen to be D ¼ 2⌈n=2⌉ − 2ϵ.
It is expected that at one loop all Feynman integrals can be
expressed in terms of MPLs, order by order in the dimen-
sional regulator ϵ. The integrals ~Jn are a convenient basis,
as they are functions of uniform weight ⌈n=2⌉ (where ϵ is
counted with weight −1). We divide ~Jn by its maximal cut
in integer dimensions to define a normalized integral Jn.
A cut integral CCJn in dimensional regularization [48] is

defined from the uncut integrals of Eq. (4) by integrating
the integrand of Jn over a contour encircling the poles of a
subset C of propagators. Each element Jn of our basis is
naturally represented by its Feynman graph G, with n
internal and n external edges. Each edge carries a distinct
label, which can be used to keep track of its mass. We
denote the set of all internal edges of G by EG. Similarly,
we represent each cut integral CCJG by a cut graph ðG;CÞ,
where C is the subset of edges identifying the cut
propagators, and where the original uncut integral JG ≡
Jn corresponds to G≡ ðG;∅Þ.
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Within this setting, we find that when restricted to one-
loop integrals, the coaction of Eq. (1) has a simple inter-
pretation as a coaction on cut graphs. We first note that there
is a combinatorial coaction on cut graphs [46] given by

ΔðG;CÞ ¼
X

C⊆X⊆EG
X≠∅

�
ðGX;CÞþaX

X
e∈XnC

ðGXne;CÞ
�
⊗ ðG;XÞ;

ð5Þ
where aX can be any function on subsets of edges that takes
values in Q, and GX is the graph obtained by contracting all
internal edges ofG except those inX. The second entry in the
coaction is the cut graph ðG;XÞwhere the set of cut edges X
is necessarily nonempty and contains the subsetC. A central
result of our Letter is that there exist unique values of aX for
which thegraphical operation of Eq. (5)maps precisely to the
coaction of Eq. (1) when acting on one-loop Feynman
integrals. To illustrate this, consider the application of
Eq. (5) to the uncut basis integrals JG (i.e., taking C ¼ ∅),
yielding

ΔðJGÞ ¼
X

∅≠X⊆EG

�
JGX

þ aX
X
e∈X

JGXne

�
⊗ CXJG: ð6Þ

Equation (6) agrees with the coaction of Eq. (1) on one-loop
integrals, provided we set aX ¼ 1=2 (aX ¼ 0) when the
number of edges jXj is even (odd). This defines the operation
we call the diagrammatic coaction. Using Eq. (5) it general-
izes straightforwardly to anyΔðCCJGÞ, with the same values
for aX. To relate Eq. (1) to Eq. (6), we establish that a
complete set of contours is givenby those encircling the poles
of propagators, as in the cut integrals above, along with those
that additionally encircle the pole at infinity [48]. These two
types of contours are associated with Landau singularities of
the first and second types, respectively. A remarkable linear
relation [49–51] then allows us to express the latter in terms
of the former, so that it is indeed sufficient to write cut
integrals CXJG in the second entries of Eq. (1). The same
linear relation can be interpreted as generating the terms
proportional to aX, with its values fixed uniquely as above, in
order to satisfy Eq. (2).
Considering a variety of one-loop integrals, we have

verified that Eq. (6) holds order by order in ϵ. To this end,
we computed the left-hand side by acting with the MPL
coaction on the first few Laurent coefficients of a given
integral Jn, while on the right-hand side we expanded both
the basis integrals and their cuts in ϵ. In particular, we have
verified Eq. (6) for tadpoles, bubbles, and most triangles
and boxes with a variety of internal and external mass
configurations [52]. We have also performed consistency
checks for the massless pentagon and hexagon. This leads
us to conjecture that Eq. (6) holds to any order in ϵ for all
basis integrals Jn, and hence for any one-loop integral.
We present some illustrative examples with few edges.

For the uncut bubble with massive propagators, we have

ð7Þ

For its two-propagator cut, we obtain

ð8Þ

These equations can be read in two ways: according to
Eq. (5), as an operation on graphs, or according to Eq. (6), as
an operation on the functions obtained by evaluating the
corresponding integrals Jn, as defined in Eq. (4). Equation (8)
illustrates the generalization of Eq. (6) toΔðCCJnÞ. Since the
formula for the coaction is valid before expansion in ϵ, masses
may be assigned arbitrarily. In some limits some of the cut
integrals can vanish or contain divergences. These limiting
behaviors do not spoil the validity of our conjecture. For
instance, the coaction on a trianglewith massless propagators
(indicated by thin edges) is given by

ð9Þ
since all tadpoles vanish in this case. Given our choice of basis
integrals in Eq. (4) where D ¼ 2⌈n=2⌉ − 2ϵ, the integrals
corresponding to the uncut graphs on the left-hand sides of
Eqs. (7) and (9) are finite, while the tadpoles in Eq. (7) and the
massless bubbles inEq. (9) introduce singularities on the right-
hand sides. Owing to a relation between uncut integrals and
their one- and two-propagator cuts [48], these poles cancel,
which is essential for the validity of Eq. (6). This cancellation
is a general feature of finite integrals and a nontrivial
consistency check of our conjecture.
Discontinuities and the first-entry condition.—The exist-

ence of a simple formula for the coaction on Feynman
integrals is not only of formal interest. One class of
applications stems from the fact that Feynman integrals
are multivalued functions whose discontinuities are
described by cut integrals. According to Eq. (3), disconti-
nuity operators act only on the first entry of the coaction. It
has already been understood that the first entries in the
coaction encode either branch cuts of external channels [53]
or internal masses [54]. This is known as the first-entry
condition. Equation (6) implies a stronger version of this
condition: the first entries of the coaction are themselves
Feynman integrals. This generalizes a result of Ref. [55] to
divergent integrals in dimensional regularization and also
incorporates the Steinmann relations [56–59]. The known
version of the first-entry condition immediately follows. The
terms in the coaction with tadpoles and bubbles in the first
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entry identify branch cuts of internal masses and external
channels, and the corresponding discontinuity functions
appear in the respective second entries.We refer to Eq. (9) as
an example: each bubble in the first entries of the tensor
uniquely identifies a channel, and the corresponding
discontinuity function, the relevant two-propagator cut,
appears in the respective second entry. The relation between
single discontinuities and cuts is thus satisfied by construc-
tion. Relations between iterated discontinuities andmultiple
cuts [54,60] are also built in: for instance, double disconti-
nuities are apparent in terms with triangles and boxes in the
first entry, and the corresponding three- and four-propagator
cuts in the second.
Differential equations for one-loop integrals.—Another

important application of Eq. (6) is the possibility to easily

derive differential equations for one-loop Feynman inte-
grals. For this, we focus on the terms of Eq. (6) with a
logarithm in the second entry. According to Eq. (3),
differential operators act only on the second entry of the
coaction, turning the logarithms into algebraic functions.
The resulting tensor can thus be trivially lifted to a function.
As an example, consider the pentagon integral J5 in 6 − 2ϵ
dimensions. The terms on the right-hand side of Eq. (6)
with a logarithm in the second entry are very few: they are
the maximal cut of the pentagon at Oðϵ1Þ, and the next-to-
maximal and next-to-next-to-maximal cuts at Oðϵ0Þ. From
Eq. (3), it follows that the derivative of J5 is related
exclusively to the Feynman integrals appearing in the first
entries corresponding to these cuts, namely, J5, J4, and J3.
Consequently, we obtain

ð10Þ

where i, j, k, and l run over distinct edges of the graph. We
stress that the differential equation in Eq. (10) is valid for a
general pentagon integral, with any configuration of
internal and external masses, and to all orders in ϵ.
Similarly, one may derive differential equations for any

one-loop integral, with an arbitrary number of propagators n
and an arbitrary number of scales. It is a general feature that
the arguments of the d log forms in these differential
equations, also known as the letters of the alphabet of
the integral, are associated exclusively with Feynman
integrals Jn with at most two uncut propagators. These cuts
can be computed explicitly for any n using the techniques of
Ref. [48]. Hence, we are able to write down the system of
differential equations for any one-loop integral. We note that
this system is characterized by a simple triangular structure:
the equation for Jn involves only Jn, Jn−1 and Jn−2. Details
will be given in a forthcoming publication [52].
Discussion.—In this Letter we have proposed a coaction

on certain classes of integrals. When acting on MPLs, it
reduces to the known coaction on this class of functions.
Our proposal, however, goes beyond this case, and we have
demonstrated its validity by constructing a coaction on one-
loop integrals that admit a Laurent expansion in terms of
MPLs, reproducing the coaction on MPLs order by order in
ϵ. Remarkably, when restricted to one-loop integrals,
Eq. (1) has a simple combinatorial interpretation in terms
of cut graphs, given by Eq. (5).
The resulting diagrammatic coaction of Eq. (6) effectively

encodes the algebraic and analytic structure of one-loop
integrals. It therefore has immediate applications in identi-
fying the discontinuities of these integrals in terms of cuts,

and in deriving the differential equations they admit. These
equations are determined by limited information on cut
integrals. Standard methods to derive such differential
equations rely instead on solving systems of IBP identities,
which often becomes a computational bottleneck. Obtaining
the differential equation from the diagrammatic coaction
circumvents this difficulty. It also sheds light on the general
structure of these systems of differential equations and the
resulting alphabet.
It is natural to speculate how our discussionmight general-

ize beyond one loop, in particular to cases where the integrals
can no longer be expressed in terms ofMPLs. The concept of
master contour has a natural interpretation in the context of
two-loop integrals [61], so it is reasonable to expect that
Eq. (1) continues tohold if the appropriatemaster contours are
considered. Starting from two loops, several master integrals
may share the samepropagators, anddiffer onlyby thepowers
to which propagators are raised or by polynomials in the
numerator. In such cases we cannot expect that the master
contours can only be labeled by subsets of propagators; rather,
the contours will depend crucially on Landau singularities of
the second type. As a consequence, while we believe that
Eq. (1) continues to hold beyond one loop, it is still unclear
how Eq. (6) generalizes. Integrations over more complicated
classes of contours may be required, including integrations
over cycles of surfaces of higher genus in cases where the
integral cannot be expressed in terms of MPLs. The study of
homology groups associated to certain two-loop integrals
[62] may help in identifying the relevant contours.
Finally, let us comment on connections to pure mathemat-

ics. First, the search for a combinatorial coaction on Feynman
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graphs which agrees with the coaction on MPLs has been an
active area of research, see, e.g., Ref. [63]. So far, however,
coproducts and coactions on Feynman graphs have focused
on Feynman graphs without cut edges [64–67]. Equation (6)
suggests that it is in fact also necessary to take cut Feynman
graphs into account. It would therefore be interesting to
examine the literature in light of Eq. (6). Second, it would be
interesting to compare Eq. (1) with the motivic coaction
introduced by Brown [30] and its application to Feynman
integrals [55,68]. The motivic coaction takes a slightly
different form. In particular, its second entry does not have
a direct interpretation in terms of integrals, so its relation to
Eq. (1) is not straightforward. Our results may shed new light
on some of these concepts in pure mathematics, while the
motivic coactionmight elucidate the origin of the simple form
of the diagrammatic coaction at one loop, paving the way for
its generalization.We expect that Eq. (1) should apply equally
well to two-loop integrals and hypergeometric functions that
cannot be expressed in terms of MPLs, but require the
introduction of elliptic curves. Equation (1) thus makes a
prediction for a coaction on elliptic generalizations of MPLs,
and it would be interesting to explore this direction, and its
connection to the motivic coaction.

We are grateful to Herbert Gangl, Roman Lee, Erik
Panzer, and Volodya Smirnov for discussions and commu-
nications, and to Francis Brown, Fabrizio Caola, and
Bernhard Mistlberger for comments on the manuscript.
S. A. acknowledges the hospitality of Trinity College
Dublin and the CERN Theoretical Physics Department at
various stages of this work. C. D. acknowledges the hospi-
tality of theHiggs Center of theUniversity of Edinburgh and
of Trinity College Dublin at various stages of this work. E.
G. acknowledges the hospitality of Trinity College Dublin.
This work is supported by the Juniorprofessor Program of
Ministry of Science, Research and the Arts of the state of
Baden-Württemberg, Germany (S. A.), the European
Research Council (ERC) under the Horizon 2020
Research and Innovation Programme through Grants
No. 647356 (R. B.) and No. 637019 (C. D.), and by the
STFC Consolidated Grant “Particle Physics at the Higgs
Centre” (E. G.).Wewould also like to thank the ESI institute
inVienna and the organizers of the program “Challenges and
Concepts for Field Theory and Applications in the Era of
LHC Run-2,” Nordita in Stockholm and the organizers of
“Aspects of Amplitudes,” and the MITP in Mainz and the
organizers of the program “AMPDEV2017,” where certain
ideas presented in this Letter were consolidated.

[1] L. Landau, On analytic properties of vertex parts in quantum
field theory, Nucl. Phys. 13, 181 (1959).

[2] R. Cutkosky, Singularities and discontinuities of Feynman
amplitudes, J. Math. Phys. (N.Y.) 1, 429 (1960).

[3] A. B. Goncharov, Multiple polylogarithms and mixed Tate
motives, arXiv:math/0103059.

[4] A. B. Goncharov, Galois symmetries of fundamental group-
oids and noncommutative geometry, Duke Math. J. 128, 209
(2005).

[5] F. Brown, The Massless higher-loop two-point function,
Commun. Math. Phys. 287, 925 (2009).

[6] C. Anastasiou, C. Duhr, F. Dulat, and B. Mistlberger, Soft
triple-real radiation for Higgs production at N3LO, J. High
Energy Phys. 07 (2013) 003.

[7] E. Panzer, Algorithms for the symbolic integration of
hyperlogarithms with applications to Feynman integrals,
Comput. Phys. Commun. 188, 148 (2015).

[8] C. Bogner and F. Brown, Feynman integrals and iterated
integrals on moduli spaces of curves of genus zero,
Commun. Num. Theor. Phys. 9, 189 (2015).

[9] C. Bogner, MPL—A program for computations with iter-
ated integrals on moduli spaces of curves of genus zero,
Comput. Phys. Commun. 203, 339 (2016).

[10] J. Ablinger, J. Blümlein, C. Raab, C. Schneider, and F.
Wißbrock, Calculating massive 3-loop graphs for operator
matrix elements by the method of hyperlogarithms, Nucl.
Phys. B885, 409 (2014).

[11] J. M. Henn, Multiloop Integrals in Dimensional Regu-
larization Made Simple, Phys. Rev. Lett. 110, 251601
(2013).

[12] A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich,
Classical Polylogarithms for Amplitudes and Wilson Loops,
Phys. Rev. Lett. 105, 151605 (2010).

[13] E. Remiddi and J. Vermaseren, Harmonic polylogarithms,
Int. J. Mod. Phys. A A15, 725 (2000).

[14] F. C. Brown, Multiple zeta values and periods of moduli
spaces M0;n, Ann. Sci. Ecole Norm. Sup. 42, 371 (2009).

[15] F. Brown, On the decomposition of motivic multiple zeta
values, arXiv:1102.1310.

[16] C. Duhr, H. Gangl, and J. R. Rhodes, From polygons and
symbols to polylogarithmic functions, J. High Energy Phys.
10 (2012) 075.

[17] C. Duhr, Hopf algebras, coproducts and symbols: an
application to Higgs boson amplitudes, J. High Energy
Phys. 08 (2012) 043.

[18] M. Caffo, H. Czyz, S. Laporta, and E. Remiddi, The master
differential equations for the two loop sunrise selfmass
amplitudes, Nuovo Cimento A 111, 365 (1998).

[19] S. Bloch and P. Vanhove, The elliptic dilogarithm for the
sunset graph, J. Number Theory 148, 328 (2015).

[20] L. Adams, C. Bogner, and S. Weinzierl, The two-loop
sunrise graph with arbitrary masses, J. Math. Phys. (N.Y.)
54, 052303 (2013).

[21] S. Bloch, M. Kerr, and P. Vanhove, A Feynman integral via
higher normal functions, Compos. Math. 151, 2329 (2015).

[22] L. Adams, C. Bogner, and S. Weinzierl, The two-loop
sunrise graph in two space-time dimensions with arbitrary
masses in terms of elliptic dilogarithms, J. Math. Phys.
(N.Y.) 55, 102301 (2014).

[23] L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise
integral around four space-time dimensions and generalisa-
tions of the Clausen andGlaisher functions towards the elliptic
case, J. Math. Phys. (N.Y.) 56, 072303 (2015).

[24] L. Adams, C. Bogner, and S. Weinzierl, The iterated
structure of the all-order result for the two-loop sunrise
integral, J. Math. Phys. (N.Y.) 57, 032304 (2016).

PRL 119, 051601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

051601-5

https://doi.org/10.1016/0029-5582(59)90154-3
https://doi.org/10.1063/1.1703676
http://arXiv.org/abs/math/0103059
https://doi.org/10.1215/S0012-7094-04-12822-2
https://doi.org/10.1215/S0012-7094-04-12822-2
https://doi.org/10.1007/s00220-009-0740-5
https://doi.org/10.1007/JHEP07(2013)003
https://doi.org/10.1007/JHEP07(2013)003
https://doi.org/10.1016/j.cpc.2014.10.019
https://doi.org/10.4310/CNTP.2015.v9.n1.a3
https://doi.org/10.1016/j.cpc.2016.02.033
https://doi.org/10.1016/j.nuclphysb.2014.04.007
https://doi.org/10.1016/j.nuclphysb.2014.04.007
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.105.151605
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.24033/asens.2099
http://arXiv.org/abs/1102.1310
https://doi.org/10.1007/JHEP10(2012)075
https://doi.org/10.1007/JHEP10(2012)075
https://doi.org/10.1007/JHEP08(2012)043
https://doi.org/10.1007/JHEP08(2012)043
https://doi.org/10.1016/j.jnt.2014.09.032
https://doi.org/10.1063/1.4804996
https://doi.org/10.1063/1.4804996
https://doi.org/10.1112/S0010437X15007472
https://doi.org/10.1063/1.4896563
https://doi.org/10.1063/1.4896563
https://doi.org/10.1063/1.4926985
https://doi.org/10.1063/1.4944722


[25] S. Bloch, M. Kerr, and P. Vanhove, Local mirror symmetry
and the sunset Feynman integral, arXiv:1601.08181.

[26] L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl, The
kite integral to all orders in terms of elliptic polylogarithms,
J. Math. Phys. (N.Y.) 57, 122302 (2016).

[27] E. Remiddi and L. Tancredi, Differential equations and
dispersion relations for Feynman amplitudes. The two-loop
massive sunrise and the kite integral, Nucl. Phys. B907, 400
(2016).

[28] A. Primo and L. Tancredi, On the maximal cut of Feynman
integrals and the solution of their differential equations,
Nucl. Phys. B916, 94 (2017).

[29] A. von Manteuffel and L. Tancredi, A non-planar two-loop
three-point function beyond multiple polylogarithms, J.
High Energy Phys. 06 (2017) 127.

[30] F. Brown, Notes on motivic periods, arXiv:1512.06410.
[31] F. C. Brown, Periods and Cosmic Galois group, http://www

.ihes.fr/~brown/SMFBrown.pdf.
[32] D. Manchon, Hopf algebras, from basics to applications to

renormalization, in 5th Mathematical Meeting of Glanon:
Algebra, Geometry and Applications to Physics Glanon,
Burgundy, France, July 2-6, 2001 (2001).

[33] P. Cartier, A primer of hopf algebras, in Frontiers in Number
Theory, Physics, and Geometry II, edited by P. Cartier, P.
Moussa, B. Julia, and P. Vanhove (Springer, Berlin, Heidel-
berg, 2007), pp. 537–615.

[34] S. Weinzierl, Hopf algebra structures in particle physics,
Eur. Phys. J. C 33, s871 (2004).

[35] S. Weinzierl, Hopf algebras and Dyson-Schwinger equa-
tions, Front. Phys. 11, 111206 (2016).

[36] C. Duhr, Mathematical aspects of scattering amplitudes,
arXiv:1411.7538.

[37] S. Moch, P. Uwer, and S. Weinzierl, Nested sums, expansion
of transcendental functions and multiscale multiloop
integrals, J. Math. Phys. (N.Y.) 43, 3363 (2002).

[38] S. Moch and P. Uwer, XSummer: Transcendental functions
and symbolic summation in form, Comput. Phys. Commun.
174, 759 (2006).

[39] T. Huber and D. Maitre, HypExp, a Mathematica package
for expanding hypergeometric functions around integer-
valued parameters, Comput. Phys. Commun. 175, 122
(2006).

[40] T. Huber and D. Maitre, HypExp 2, expanding hyper-
geometric functions about half-integer parameters, Comput.
Phys. Commun. 178, 755 (2008).

[41] F. V. Tkachov, A theorem on analytical calculability of four
loop renormalization group functions, Phys. Lett. 100B, 65
(1981).

[42] K. Chetyrkin and F. Tkachov, Integration by Parts: The
algorithm to calculate beta functions in 4 loops, Nucl. Phys.
B192, 159 (1981).

[43] Z. Bern, L. J. Dixon, and D. A. Kosower, Dimensionally
regulated one loop integrals, Phys. Lett. B 302, 299 (1993);
Erratum, Phys. Lett. B 318, 649(E) (1993).

[44] O. V. Tarasov, Connection between Feynman integrals
having different values of the space-time dimension, Phys.
Rev. D 54, 6479 (1996).

[45] R. N. Lee, Space-time dimensionality D as complex vari-
able: Calculating loop integrals using dimensional

recurrence relation and analytical properties with respect
to D, Nucl. Phys. B830, 474 (2010).

[46] This is a version of an incidence algebra [47].
[47] S. A. Joni and G. C. Rota, Coalgebras and bialgebras in

combinatorics, Stud. Appl. Math. 61, 93 (1979).
[48] S.Abreu, R. Britto, C. Duhr, and E.Gardi, Cuts from residues:

the one-loop case, J. High Energy Phys. 06 (2017) 114.
[49] D. Fotiadi, M. Froissart, J. Lascoux, and F. Pham, Appli-

cations of an isotopy theorem, Topology 4, 159 (1965).
[50] D. Fotiadi and F. Pham, Analytic properties of some

integrals over complex manifolds, in Homology and Feyn-
man Integrals, edited by R. C. Hwa and V. L. Teplitz
(W. A. Benjamin Inc., New York, 1966).

[51] R. C. Hwa and V. L. Teplitz, Homology and Feynman
Integrals (W. A. Benjamin Inc., New York, 1966).

[52] S. Abreu, R. Britto, C. Duhr, and E. Gardi, Diagrammatic
Hopf algebra of cut Feynman integrals: the one-loop case,
arXiv:1704.07931.

[53] D. Gaiotto, J. Maldacena, A. Sever, and P. Vieira, Pulling
the straps of polygons, J. High Energy Phys. 12 (2011) 011.

[54] S. Abreu, R. Britto, and H. Grönqvist, Cuts and coproducts
of massive triangle diagrams, J. High Energy Phys. 07
(2015) 111.

[55] F. Brown, Feynman amplitudes and Cosmic Galois group,
arXiv:1512.06409.

[56] O. Steinmann, Über den Zusammenhang zwischen den
Wightmanfunktionen und der retardierten Kommutatoren,
Helv. Phys. Acta 33, 257 (1960).

[57] O. Steinmann, Wightman-Funktionen und retardierten
Kommutatoren, Helv. Phys. Acta 33, 347 (1960).

[58] K. E. Cahill and H. P. Stapp, Optical theorems and
Steinmann relations, Ann. Phys. (Berlin) 90, 438 (1975).

[59] S. Caron-Huot, L. J. Dixon, A. McLeod, and M. von Hippel,
Bootstrapping a Five-Loop Amplitude Using Steinmann
Relations, Phys. Rev. Lett. 117, 241601 (2016).

[60] S. Abreu, R. Britto, C. Duhr, and E. Gardi, From multiple
unitarity cuts to the coproduct of Feynman integrals, J. High
Energy Phys. 10 (2014) 125.

[61] S. Caron-Huot and K. J. Larsen, Uniqueness of two-loop
master contours, J. High Energy Phys. 10 (2012) 026.

[62] P. Federbush, Calculation of some homology groups
relevant to sixth-order Feynman diagrams, J. Math. Phys.
(N.Y.) 6, 941 (1965).

[63] S. Bloch, H. Esnault, and D. Kreimer, On Motives asso-
ciated to graph polynomials, Commun. Math. Phys. 267,
181 (2006).

[64] D. Kreimer, On the Hopf algebra structure of perturbative
quantum field theories, Adv. Theor. Math. Phys. 2, 303
(1998).

[65] A. Connes and D. Kreimer, Hopf algebras, renormalization
and noncommutative geometry, Commun. Math. Phys. 199,
203 (1998).

[66] A. Connes and D. Kreimer, Renormalization in quantum
field theory and the Riemann-Hilbert problem. 1. The Hopf
algebra structure of graphs and the main theorem, Commun.
Math. Phys. 210, 249 (2000).

[67] D. Kreimer, The core Hopf algebra, Clay Math. Proc. 11,
313 (2010).

[68] E. Panzer and O. Schnetz, The Galois coaction on ϕ4

periods, arXiv:1603.04289.

PRL 119, 051601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

051601-6

http://arXiv.org/abs/1601.08181
https://doi.org/10.1063/1.4969060
https://doi.org/10.1016/j.nuclphysb.2016.04.013
https://doi.org/10.1016/j.nuclphysb.2016.04.013
https://doi.org/10.1016/j.nuclphysb.2016.12.021
https://doi.org/10.1007/JHEP06(2017)127
https://doi.org/10.1007/JHEP06(2017)127
http://arXiv.org/abs/1512.06410
http://www.ihes.fr/%7Ebrown/SMFBrown.pdf
http://www.ihes.fr/%7Ebrown/SMFBrown.pdf
http://www.ihes.fr/%7Ebrown/SMFBrown.pdf
http://www.ihes.fr/%7Ebrown/SMFBrown.pdf
https://doi.org/10.1140/epjcd/s2003-03-1001-y
https://doi.org/10.1007/s11467-016-0562-9
http://arXiv.org/abs/1411.7538
https://doi.org/10.1063/1.1471366
https://doi.org/10.1016/j.cpc.2005.12.014
https://doi.org/10.1016/j.cpc.2005.12.014
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0370-2693(93)90400-C
https://doi.org/10.1016/0370-2693(93)90469-X
https://doi.org/10.1103/PhysRevD.54.6479
https://doi.org/10.1103/PhysRevD.54.6479
https://doi.org/10.1016/j.nuclphysb.2009.12.025
https://doi.org/10.1002/sapm197961293
https://doi.org/10.1007/JHEP06(2017)114
https://doi.org/10.1016/0040-9383(65)90063-7
http://arXiv.org/abs/1704.07931
https://doi.org/10.1007/JHEP12(2011)011
https://doi.org/10.1007/JHEP07(2015)111
https://doi.org/10.1007/JHEP07(2015)111
http://arXiv.org/abs/1512.06409
https://doi.org/10.1016/0003-4916(75)90006-8
https://doi.org/10.1103/PhysRevLett.117.241601
https://doi.org/10.1007/JHEP10(2014)125
https://doi.org/10.1007/JHEP10(2014)125
https://doi.org/10.1007/JHEP10(2012)026
https://doi.org/10.1063/1.1704354
https://doi.org/10.1063/1.1704354
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.4310/ATMP.1998.v2.n2.a4
https://doi.org/10.4310/ATMP.1998.v2.n2.a4
https://doi.org/10.1007/s002200050499
https://doi.org/10.1007/s002200050499
https://doi.org/10.1007/s002200050779
https://doi.org/10.1007/s002200050779
http://arXiv.org/abs/1603.04289

