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We develop a perturbation theory of quantum (and classical) master equations with slowly varying
parameters, applicable to systems which are externally controlled on a time scale much longer than their
characteristic relaxation time. We apply this technique to the analysis of finite-time isothermal processes in
which, differently from quasistatic transformations, the state of the system is not able to continuously relax
to the equilibrium ensemble. Our approach allows one to formally evaluate perturbations up to arbitrary
order to the work and heat exchange associated with an arbitrary process. Within first order in the
perturbation expansion, we identify a general formula for the efficiency at maximum power of a finite-time
Carnot engine. We also clarify under which assumptions and in which limit one can recover previous
phenomenological results as, for example, the Curzon-Ahlborn efficiency.
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A central result in the study of open quantum systems [1,2]
is the Markovian master equation (MME) approach which,
under realistic assumptions, describes the temporal evolution
of a system of interest A induced by a weak coupling with a
large external environment E. This consists in a first order
linear differential equation _ρðtÞ ¼ L½ρðtÞ�, where ρðtÞ is the
density matrix of A and where the generator of the dynamics
is provided by a quantum Liouvillian superoperator L
that can be casted in the so-called Gorini-Kossakowski-
Sudarshan-Lindblad form [3–5]. For autonomous systems
the latter does not exhibit an explicit time dependence and the
dynamics of A exponentially relaxes to a (typically unique)
equilibrium steady state ρ0 identified by the null eigenvector
equationL½ρ0� ¼ 0.MMEs can also be employed to describe
the temporal evolution of A when it is tampered by the
presence of slow varying, external driving forces. Indeed, as
long as these operate on a time scale which is much larger
than the characteristic bath correlation times and the inverse
frequencies of the system of interest, the effective coupling
between A and E adapts instantaneously to the driving
control, resulting on a MME governed by a time-dependent
Liouvillian generator, i.e.,

_ρðtÞ ¼ Lt½ρðtÞ�: ð1Þ
An explicit integration of this equation is in general difficult
to obtain. Yet, if the control forces are so slow that their
associated time scale is also larger with respect to the
relaxation time of the system induced by the interaction
with E, one expects ρðtÞ to approximately follow the
instantaneous equilibrium state ρ0ðtÞ that nullifies Lt. Our
aim is to estimate quantitative deviations from this ultraslow
driving regime. For this purpose we develop a perturbation
theory valid in the limit of slowly varying LiouvilliansLt and
derive a formal solution of Eq. (1) which allows one to
evaluate nonequilibrium corrections up to arbitrary order.
The main motivation of our analysis is to model thermo-

dynamic processes and cycles beyond the usual reversible

limit which is strictly valid only for infinitely long quasi-
static transformations. Finite-time thermodynamics [6,7] is
a well-established research field that is focused on this issue
and, in particular, on the trade-off between efficiency and
power of realistic heat engines. Several results in this
context have been derived from the geometrical notion of
thermodynamic length [8], from nonequilibrium identities
known as fluctuation theorems [9,10], or from phenom-
enological models of heat engines [6,11]. The latter
approach led to the identification of a quite general value
for the efficiency at maximum power which is the celebrated
Curzon-Ahlborn (Chambadal-Novikov) efficiency [11–13].
Our framework is complementary to previous approaches
since it allows one to explicitly express irreversible thermo-
dynamic quantities (e.g., heat and work) in terms of the
Liouvillian operator that governs the system dynamics. In
this way we identify a general link between the frequency
scaling of the spectral density and the efficiency of finite-
time Carnot heat engines, clarifying for which kind of
thermal baths the Curzon-Ahlborn result or other particular
limits can be recovered.
Similar questions and problems have been addressed in

the literature with different aims and methods. Finite-time
quantum thermodynamics [14–16] and Brownian quantum
engines [17,18] were studied using the formalism of open
quantum systems. In particular single-qubit heat engines
subject to Markovian dissipation were considered in
Refs. [19–22]. The impact of the bath spectral density
on the efficiency of quantum engines was also noticed in
the context of autonomous heat pumps [23,24] and single-
qubit minimal machines [25]. Universal features and
bounds for the efficiency at maximum power of finite-time
Carnot cycles were identified in Refs. [17,26–28] for
generic heat engines. Other results were obtained combin-
ing MMEs and linear response theory [6,29,30] and similar
approaches were used to demonstrate the universality of
heat engines in the limit of infinitesimal cycles [31].
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Outside the field of thermodynamics, our theory of slowly
driven open quantum systems also contributes to the
current research activity on quantum adiabatic driving.
Several generalizations of the adiabatic theorem to open
quantum systems have been already proposed [30,32–34].
Our aims and results are, however, different: we are not
interested in the derivation of a modified MME for time-
dependent Hamiltonians but only on the dynamical evo-
lution of A for an assigned time-dependent Liouvillian Lt
that, for all t, admits a unique (instantaneous) equilibrium
state. This kind of adiabatic approach has recently proved
to be effective in the study of general time-dependent
Liouvillians with higher dimensional kernels [35–37]. We
finally would like to stress that, by replacing ρðtÞ with a
probability vector, all the results that we are going to
present in the following are directly applicable also to
classical continuous-time Markov processes [38].
Slow driving perturbation theory.—Let us consider the

case of an open quantum system A evolving as in Eq. (1)
under the action of a quantum LiuovillianLt which exhibits
an explicit temporal dependence induced by the external
modulation of some control parameters, say the value of a
magnetic field or the intensity of a laser which are gradually
changed according to some assigned protocol. In what
follows we shall assume that for all t, Lt admits a unique
zero (instantaneous) eigenstate ρ0ðtÞ and that all the other
eigenvalues have a strictly negative real part (in this case
the map is said to be relaxing or mixing [2,39]). This causes
the system to exponentially converge to the instantaneous
steady state, for a fixed value of the external modulation:

Assumption 1∶ lim
s→∞

eLts½ρ� ¼ ρ0ðtÞ; ∀ ρ; t: ð2Þ

Under these conditions, one can easily verify that for an
infinitely slow modulation of Lt, the system A will be
forced to follow quasistatically the trajectory determined by
the time-dependent density matrix ρ0ðtÞ, i.e.,

ρðtÞ≃ ρ0ðtÞ: ð3Þ

Physically this follows from the fact that, in this regime,
there is enough time for A to track the instantaneous
equilibrium states defined by Lt. This solution well
approximates the dynamics of realistic configurations
where, for instance, the system of interest is in thermal
contact with a reservoir while being subject to a quasistatic
external control, continuously relaxing to the instantaneous
Gibbs ensemble. Notice, however, that at this stage of the
analysis ρ0ðtÞ can be an arbitrary quantum state, covering
more general open evolutions including also systems in
contact with engineered nonthermal baths (e.g., squeezed
environments, negative temperatures, artificial dissipative
maps, etc.). To characterize deviations from the quasistatic
solution, Eq. (3), we find it convenient to introduce the
following time-rescaled quantities

~Lt0 ¼ Lτt0 ; ~ρðt0Þ ¼ ρðτt0Þ; ð4Þ

where τ is the duration of the protocol, i.e., the total time
interval on which the system evolves under the influence
of the external control. With this choice Eq. (1) can be
expressed as

_~ρðt0Þ ¼ τ ~Lt0 ½~ρðt0Þ�; ð5Þ

the dynamics being confined now into the unit interval
t0 ∈ ½0; 1�. In this way the total duration of the protocol
appears only as a multiplicative factor while all the
information about its “shape” is contained in ~Lt0 . Notice
also that while ~Lt0 is independent of τ, the time-rescaled
solution ~ρðt0Þ of Eq. (5) is not. In particular the quasistatic
solution (3) can be recovered from Eq. (5) in the asymptotic
limit τ → ∞. Therefore, we look for a perturbation expan-
sion of the solution of Eq. (5) in powers of 1=τ:

~ρðt0Þ ¼ ~ρ0ðt0Þ þ
~ρ1ðt0Þ
τ

þ ~ρ2ðt0Þ
τ2

þ � � � ; ð6Þ

where normalization implies that all perturbations are
traceless:

tr½~ρjðt0Þ� ¼ 0; ∀ j > 0: ð7Þ

A rigorous mathematical analysis of the convergence pro-
perties of the series (6) is beyond the aim of this work. For
our purposes it is sufficient that Eq. (6), truncated up to a
finite order, provides a good approximation of the dynam-
ics. The validity of this approach is verified in several
numerical examples presented in the Supplemental
Material (Appendixes A, B, and C) [40].
Substituting Eq. (6) in both sides of Eq. (5), and equating

the terms proportional to the same powers of 1=τ, we get
the following set of recursive relations:

0 ¼ ~Lt0 ½~ρ0ðt0Þ�; ð8Þ

_~ρjðt0Þ ¼ ~Lt0 ½~ρjþ1ðt0Þ�; j ¼ 0; 1;…: ð9Þ

As expected, Eq. (8) implies that ~ρ0ðt0Þ is the (time-
rescaled) instantaneous steady state of the Liouvillian.
Moreover, from Eq. (9), all finite-time perturbations can
be recursively obtained. Indeed, exploiting Eq. (7), Eq. (9)
can be univocally inverted by introducing the projector P
on the traceless subspace, i.e., P½X� ¼ X − trðXÞI=d with I
being the identity operator on A and d the dimension of its
Hilbert space. Now since tr½ρ0ðtÞ� ¼ 1 ≠ 0, the Liouvillian
within the subspace of traceless operators is invertible and
we also have ðPLtPÞ−1 ¼ ðLtPÞ−1. Accordingly, for all j
we can write Eq. (9) as ~ρjþ1ðt0Þ ¼ ð ~Lt0PÞ−1 _~ρjðt0Þ, which by
iteration yields explicit formulas for each perturbative term:
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~ρjðt0Þ ¼
�
ð ~Lt0PÞ−1

d
dt0

�
j
~ρ0ðt0Þ: ð10Þ

Switching from time-rescaled variables back to the original
ones, the full solution of the MME can be compactly
expressed as an operator geometric series:

ρðtÞ ¼ 1

1 − ðLtPÞ−1 d
dt

ρ0ðtÞ: ð11Þ

It is worth stressing that the above solution is unique and
independent on the initial conditions. This is due to the fact
that, at this level of approximation, we are neglecting any
term exponentially decaying in τ. In other words, the
perturbations that we are considering are intrinsic to the
Liouvillian operator without any influence from the initial
state. In practice this means that all exact solutions of the
master equation, after an exponentially short transient
depending on the initial conditions, will converge to the
asymptotic solution (11). This is a fundamental difference
with respect to the Hamiltonian adiabatic theorem in which
finite-time corrections depend on initial conditions and
decay exponentially in τ. In the next sections we present a
couple of relevant applications of the results presented
above to the context of finite-time thermodynamics.
Finite-time isothermal process.—Let us consider the

case of a thermal MME, Eq. (1), describing the dynamical
evolution of A induced by an external driving that slowly
modifies its Hamiltonian HðtÞ while the system is con-
stantly kept in thermal contact with a bath of fixed inverse
temperature β. In this scenario the instantaneous equilib-
rium state of the problem can be identified with the Gibbs
density matrix ρ0ðtÞ ¼ exp½−βHðtÞ�=ZðtÞ, with ZðtÞ ¼
trfexp½−βHðtÞ�g being the associated partition function.
Exploiting the derivation of the previous section we wish to
determine how departures from the associated quasistatic
trajectory, Eq. (3), influence the thermodynamic properties
of the process. For this purpose we note that the mean
energy and the von Neumann entropy of A are given
by UðtÞ ¼ tr½HðtÞρðtÞ� and SðtÞ ¼ −trfρðtÞ log½ρðtÞ�g,
respectively. Moreover, following a common approach
[14,15,41,42] we identify the mean heat absorbed by the
system during the time interval ½0; τ� with

Q ¼
Z

τ

0

Tr½_ρðtÞHðtÞ�dt ¼
Z

1

0

Tr½_~ρðt0Þ ~Hðt0Þ�dt0; ð12Þ

and the mean work done on the system with

W ¼
Z

τ

0

Tr½ρðtÞ _HðtÞ�dt ¼
Z

1

0

Tr½~ρðt0Þ _~Hðt0Þ�dt0; ð13Þ

such that the first law of thermodynamics is obtained
as ΔU ¼ UðτÞ −Uð0Þ ¼ W þQ. Now, since the time-
rescaled Hamiltonian ~Hðt0Þ does not depend on τ but only

on the shape of the protocol, all the previous quantities are
influenced by τ only through the solution of the master
equation ρðtÞ, for which we know how to evaluate each
perturbative term of the series (6). Therefore, we can write
X ¼ X0 þ X1=τ þ X2=τ2 þ � � � with X ¼ U, S, W, Q, and
we can easily evaluate each term using Eq. (10). For
example, at the zeroth order approximation we recover the
standard results of equilibrium thermodynamics: U0ðtÞ ¼
−ð∂=∂βÞ logZðtÞ, S0ðtÞ ¼ ½1 − ð∂=∂βÞ� logZðtÞ, Q0 ¼
ΔS0=β, and W0 ¼ ΔU0 − ΔS0=β. The corresponding first
order irreversible corrections are instead

U1ðtÞ ¼ tr½ ~Hðt0Þ~ρ1ðt0Þ�t0¼t=τ; ð14Þ

S1ðtÞ ¼ −Tr½~ρ1ðt0Þ log (~ρ0ðt0Þ)�t0¼t=τ ¼ βU1ðtÞ; ð15Þ

Q1 ¼
Z

1

0

tr½ ~Hðt0Þ_~ρ1ðt0Þ�dt0; ð16Þ

W1 ¼ ΔU1 −Q1; ð17Þ
with ~ρ1ðtÞ as in Eq. (10). It is worth noticing that,
independently from the selected form of the MME, the
first law of thermodynamics is valid at the level of each
perturbative coefficient ΔUj ¼ Wj þQj and that, for an
initial Gibbs state ρð0Þ ¼ ρ0ð0Þ, the second law can be
expressed as Q ≤ Q0 or, equivalently, as W ≥ W0. Taking
the limit of large τ, this implies that Q1 ≤ 0 and W1 ≥ 0.
Moreover, if we consider the time-reversed process ~L←

t0 ¼
~L1−t0 , then it is easy to check that odd-order perturbations
are invariant while even-order perturbations change sign
Q←

j ¼ ð−1Þjþ1Qj and W←
j ¼ ð−1Þjþ1Wj.

Finite-time Carnot cycles.—As a second application
of our slow driving perturbative approach consider the
case where A, initialized in a Gibbs state with Hamiltonian
HA, evolves following a Carnot cycle composed by
(1) Isothermal expansion: the system is put in contact with
a hot bath of temperature TH and the Hamiltonian is slowly
changed fromHA toHB, in a time interval τH. (2) Adiabatic
expansion: the Hamiltonian is suddenly changed from HB

to ðTC=THÞHB. (3) Isothermal compression: the system
is put in contact with a cold bath of temperature TC and
the Hamiltonian is slowly changed from ðTC=THÞHB
to ðTC=THÞHA, in a time interval τC. (4) Adiabatic
compression: the Hamiltonian is suddenly changed from
ðTC=THÞHA back to HA.
The scaling factor TC=TH characterizing the adiabatic

operations is chosen to ensure that the stationary (Gibbs)
state ρ0ðtÞ evolves continuously in time during the cycle
such that, for infinitely long processes, the system remains
always in equilibrium without irreversible jumps. In addi-
tion to this standard requirement we also assume that ρ0ðtÞ
is sufficiently smooth, so that all the derivatives appearing
in our perturbation theory are well defined along the cycle.
Specifically, since in what follows we are going to consider
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only first-order perturbations, we assume the following:
Assumption 2: ρ0ðtÞ is continuous and differentiable.
We also assume that, apart from the Hamiltonian scaling

factor TC=TH and its time length, the cold isothermal
protocol is the time reversal of the hot one: ~HCðt0Þ ¼
ðTC=THÞ ~HHð1 − t0Þ. In terms of the associated time-
rescaled Gibbs states, this is equivalent to

Assumption 2∶ ~ρCðt0Þ ¼ ~ρHð1 − t0Þ: ð18Þ

The latter assumption is common in many realistic heat
engines and can be relaxed if we are free to optimize the
shape of the two isothermal processes. Indeed in this case,
within first order in the perturbation expansion that we
are going to present later, the maximum output power is
obtained when the driving protocol respects the time-
reversal symmetry condition (18).
Now we are ready to analyze the performances of our

finite-time Carnot engine. In the limit of many cycles the
system evolution becomes periodic (ΔU ¼ 0) and the work
per cycle depends only on the heat exchanged in the hot and
cold isothermal processes: W ¼ −QH −QC. The power is
the ratio between the work extracted and the time length of
the cycle P ¼ −W=ðτH þ τCÞ ¼ ðQH þQCÞ=ðτH þ τCÞ,
while the thermodynamic efficiency is defined as
η ¼ −W=QH ¼ 1þQC=QH. If we substitute the pertur-
bative expansion, keeping only first-order terms in τH and
τC, we obtain

P≃QH
0 þQH

1 =τH þQC
0 þQC

1 =τC
τH þ τC

; ð19Þ

η≃ 1þ QC
0 þQC

1 =τC
QH

0 þQH
1 =τH

: ð20Þ

In the quasistatic limit τC, τH → ∞, the power tends to zero
and the efficiency reaches the Carnot limit

ηC ¼ 1þQC
0 =Q

H
0 ¼ 1 − TC=TH: ð21Þ

The power can be maximized with respect to τH and τC,
taking into account the physical constraints QH

0 > 0, QC
0 ,

QH
1 , Q

C
1 < 0. The corresponding efficiency at maximum

power can be easily computed (see, e.g., Ref. [17]):

η� ¼
�
2

ηC
−

1

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QC

1 =Q
H
1

p
�
−1
: ð22Þ

We also notice that, in the particular case in which heat
corrections are proportional to the temperature, Eq. (22)
reduces to the efficiency derived in Ref. [26].
We can now make use of Eqs. (16) and (10) to express

both QH
1 and QC

1 in terms of the Liouvillians LH
t0 and LC

t0

describing the two isothermal processes. Both irreversible

heat corrections depend on the particular choice of the
protocol, however, we find that their ratio has the following
scaling:

QC
1 =Q

H
1 ¼ ðTC=THÞ1−α; ð23Þ

where α is the frequency exponent of the bath spectral
density JðωÞ ∝ ωα, which is assumed to be the same for
both the hot and the cold reservoirs. The proof of Eq. (23)
can be found in the Supplemental Material (Appendix D)
[40] and follows from the time-reversal condition (18) and
a general scaling property characterizing all MMEs
obtained from standard microscopic models. Substituting
Eq. (23) in Eq. (22), we get our final result (see Fig. 1
for a plot):

η� ¼
�

2

1 − TC=TH
−

1

1þ ðTC=THÞð1−αÞ=2
�
−1
: ð24Þ

The peculiarity of the universal expression (24) is that, by
changing the parameter α, it interpolates between several
results that were previously obtained in the literature. For
example, for a flat spectral density (α ¼ 0), we recover the
Curzon-Ahlborn [11–13] efficiency η�jα¼0 ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TC=TH

p
,

while for an Ohmic bath α ¼ 1 we get η�jα¼1 ¼
2ηC=ð4 − ηCÞ, which is the efficiency obtained by
Schmiedl and Seifert for a specific Brownian engine [17].
Finally, consistently with known lower and upper bounds
[6,17,26], by taking the two limits of the infinitely super-
Ohmic or sub-Ohmic bath, we get η�jα→∞ ¼ ηC=2 ≤ η� ≤
ηC=ð2 − ηCÞ ¼ η�jα→−∞.
In Refs. [23–25], the efficiency of minimal models of

heat engines and refrigerators was also linked to the
spectral density. Such models are quite different from
the Carnot cycles considered in this work but still one
can find a qualitative agreement with our results.

FIG. 1. Efficiency at maximum power η� with respect to the
temperature ratio TC=TH for different values of the spectral
density exponent α; see Eq. (24). Light gray line represents the
Carnot bound; blue circles and green triangles are exact numeri-
cal results based on a two-level system heat engine coupled to a
flat (α ¼ 0) and Ohmic bath (α ¼ 1), respectively. The details
of the simulation are reported in the Supplemental Material
(Appendix C) [40].
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A final remark should be made on the range of
applicability of Eq. (24). Its derivation follows from the
first order expansion performed in Eqs. (19) and (20),
which is not guaranteed to be always valid in the regime
of maximum power, especially for TC=TH ≃ 0, where the
optimal values of τH and τC could become too small. This is
confirmed by the single-qubit exact simulation shown in
Fig. 1, where we observe deviations from Eq. (24) for small
values of TC=TH. It is interesting then to expand Eq. (24)
around the opposite regime, i.e., for small values of
ηC ¼ 1 − TC=TH, obtaining

η� ¼ ηC=2þ ηC
2=8þ ηC

3ð2 − αÞ=32þOðηC4Þ: ð25Þ

We notice that the first and second order coefficients, (i.e., 1
and 1=8) are independent of α and correspond to the same
values in the Taylor expansion of the Curzon-Ahlborn
[11,20] and of the Schmiedl-Seifert [17] efficiencies. This
also implies that, up to second order in ηC, our results are in
agreement with previous analyses based on linear response
thermodynamics [6,28].
Conclusions and outlook.—We have derived a perturba-

tion theory for the solution of generic master equations with
slowly varying coefficients. We focused, in particular, on
finite-time thermodynamic processes beyond the reversible
limit. Our analysis allows us to analytically derive finite-
time thermodynamic quantities in terms of the Liouvillian
operator. We have also shown that, for a Carnot cycle, the
efficiency at maximum power can be reduced to a universal
formula depending only on the temperature ratio and on the
scaling of the bath spectral density. Other implications of
the perturbation theory presented in this work could also be
studied in the future, in particular within the general context
of quantum adiabatic driving.
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