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Weconsider the contextual fractionasaquantitativemeasureof contextualityof empiricalmodels, i.e., tables
of probabilities ofmeasurement outcomes in anexperimental scenario. It provides a generalway to compare the
degree of contextuality across measurement scenarios; it bears a precise relationship to violations of Bell
inequalities; its value, and a witnessing inequality, can be computed using linear programing; it is monotonic
with respect to the “free” operations of a resource theory for contextuality; and it measures quantifiable
advantages in informatic tasks, such as games and a form of measurement-based quantum computing.
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Introduction.—Recent results have established the role
of contextuality as a resource for increasing the computa-
tional power of specific models of computation [1,2],
including enabling universal quantum computation [3].
From this perspective, it is particularly relevant to look
for appropriate measures of contextuality and indeed to
pose the question of what constitutes a good measure.
In this Letter, we propose a measure of contextuality—

the contextual fraction—which provides a quantitative
grading between noncontextuality, at one extreme, and
maximal contextuality, at the other. A maximally contex-
tual empirical model is one that admits no proper decom-
position into a convex combination of a noncontextual
model and another model. In this sense, it is meaningful to
consider both the noncontextual and contextual fractions of
any no-signaling empirical model.
These definitions are made in the general setting of the

approach to contextuality introduced in Ref. [4], in which
nonlocality is seen as a special case of contextuality.
We show that the contextual fraction has a number of

desirable properties: (i) It is fully general in the sense that it
applies in any measurement scenario; (ii) it is bounded and
normalized, taking values in the interval [0, 1], with 0
indicating noncontextuality and 1 indicating strong con-
textuality, so it may be used to sensibly compare the degree
of contextuality of empirical models not just in a given
measurement scenario but also across scenarios; (iii) it has a
precise relationship with violations of Bell inequalities,
being the maximum normalized violation attained by the
empirical model for any Bell inequality on the correspond-
ing measurement scenario; (iv) both the contextual fraction
and awitnessing Bell inequality are computable using linear
programing—these were implemented and used for com-
putational exploration of some quantum examples; (v) it is
monotonicwith respect to a range of operations on empirical
models that intuitively do not generate contextuality and
thus constitute natural “free” operations in a resource theory
of contextuality, analogous to the resource theory of entan-
glement under local operations and classical communication

[5], and subsuming existing resource theories for non-
locality [6–9]; (vi) finally, it is related to a quantifiable
increase of computational power in a certain form of
measurement-based quantum computation, sharpening the
results of Ref. [2], and similarly to advantage in games.
We leave for future work an analysis of the relationship

between the contextual fraction and other possible mea-
sures [11] and further development of (vi).
General framework for contextuality.—We briefly sum-

marize the framework introduced in Ref. [4]. The main
objects of study are empirical models: tables of data,
specifying probability distributions over the joint outcomes
of sets of compatible measurements.
A measurement scenario is an abstract description of a

particular experimental setup. It consists of a triple
hX;M; Oi, where X is a finite set of measurements, O
is a finite set of outcome values for each measurement, and
M is a set of subsets of X. Each C ∈ M is called a
measurement context and represents a set of measurements
that can be performed together.
Examples of measurement scenarios include multipartite

Bell-type scenarios familiar from discussions of nonlocal-
ity, Kochen-Specker configurations, measurement scenar-
ios associated with qudit stabilizer quantummechanics, and
more. For example, the well-known (2, 2, 2) Bell scenario,
where two experimenters, Alice and Bob, can each choose
between performing one of two different measurements,
say, a1 or a2 for Alice and b1 or b2 for Bob, obtaining one
of two possible outcomes, is represented as follows:

X ¼ fa1; a2; b1; b2g; O ¼ f0; 1g;
M ¼ ffa1; b1g; fa1; b2g; fa2; b1g; fa2; b2gg:

Given this description of the experimental setup, then
either performing repeated runs of such experiments with
varying choices of measurement context and recording the
frequencies of the various outcome events, or calculating
theoretical predictions for the probabilities of these out-
comes, results in a probability table as in Table I.
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Such data are formalized as an empirical model for the
given measurement scenario hX;M; Oi. For each meas-
urement context C, there is a probability distribution eC on
the joint outcomes of performing all the measurements in
C, that is, on the set OC of functions assigning an outcome
in O to each measurement in C.
We require that the marginals of these distributions agree

whenever contexts overlap, i.e.,

∀C;C0 ∈ M; eCjC∩C0 ¼ eC0 jC∩C0 ;

where the notation eCjU with U ⊆ C stands for margin-
alization of probability distributions (to “forget” the out-
comes of some measurements): For t ∈ OU, eCjUðtÞ ≔P

s∈OC;sjU¼t eCðsÞ. The requirement of compatibility of
marginals is a generalization of the usual no-signaling
condition and is satisfied, in particular, by all empirical
models arising from quantum predictions [4].
An empirical model is said to be contextual if this family

of distributions cannot itself be obtained as the marginals of
a single probability distribution on global assignments of
outcomes to all measurements, i.e., a distribution d on OX

(where OX acts as a canonical set of deterministic hidden
variables) such that ∀C ∈ M, djC ¼ eC. Equivalently [4],
contextual empirical models are those which have no
realization by factorizable hidden variable models; thus,
for Bell-type measurement scenarios, contextuality spe-
cializes to the usual notion of nonlocality.
In certain cases, one can witness contextuality from

merely the possibilistic, rather than probabilistic, informa-
tion contained in an empirical model—i.e., which events are
possible (with nonzero probability) and which are impos-
sible (with zero probability). A yet stronger form of con-
textuality occurs when no global assignment of outcomes is
even consistent with the possible events: An empirical
model e is said to be strongly contextual if there is no
global assignment g ∈ OX such that∀C ∈ M; eCðgjCÞ > 0.

An example is the Popescu-Rohrlich box (Table I). This is
the highest level in the qualitative hierarchy of strengths of
contextuality introduced in Ref. [4].
The contextual fraction.—Given two empirical models e

and e0 on the same measurement scenario and λ ∈ ½0; 1�, we
define the empirical model λeþ ð1 − λÞe0 by taking the
convex sum of probability distributions at each context.
Compatibility is preserved by this convex sum; hence, it
yields a well-defined empirical model.
A natural question to ask is, what fraction of a given

empirical model e admits a noncontextual explanation? This
approach enables a refinement of the binary notion of
contextuality vs noncontextuality into a quantitative grad-
ing. Instead of asking for a probability distribution on global
assignments that marginalizes to the empirical distributions
at each context, we ask only for a subprobability distribution
[22] b on global assignments OX that marginalizes at each
context to a subdistribution of the empirical data, thus
explaining a fraction of the events, i.e., ∀C∈M;bjC≤eC.
Equivalently, we ask for a convex decomposition

e ¼ λeNC þ ð1 − λÞe0; ð1Þ
where eNC is a noncontextual model and e0 is another (no-
signaling) empirical model. The maximumweight of such a
global subprobability distribution, or the maximumpossible
value of λ in such a decomposition, is called the non-
contextual fraction of e and generalizes the local fraction
previously introduced for models on Bell-type scenarios
[23,24].We denote it byNCFðeÞ and the contextual fraction
by CFðeÞ ≔ 1 − NCFðeÞ.
The notion of contextual fraction in general scenarios

was introduced in Ref. [4], where it was proved that a
model is strongly contextual if and only if its contextual
fraction is 1. In fact, in any convex decomposition of the
form (1) giving maximal weight to the noncontextual
model, the other model will necessarily be strongly con-
textual. This means that any empirical model e admits a
convex decomposition

e ¼ NCFðeÞeNC þ CFðeÞeSC ð2Þ
into a noncontextual and a strongly contextual model. Note
that eNC and eSC are not necessarily unique.
Computing the contextual fraction via LP.—The task of

finding a consistent probability subdistribution with maxi-
mum weight for a given empirical model can be formulated
as a linear programing problem. This is a relaxation of the
test for contextuality by solving a system of linear
equations over the non-negative reals from Ref. [4].
Fix a measurement scenario hX;M; Oi. Let n ≔ jOXj be

the number of global assignments, and m≔
P

C∈MjOCj¼
jfhC;sijC∈M;s∈OCgj be the number of local assign-
ments ranging over contexts. The incidence matrix [4]M is
an m × n (0,1) matrix that records the restriction relation
between global and local assignments:

TABLE I. Two empirical models on the (2, 2, 2) Bell scenario:
the well-known Clauser-Horne-Shimony-Holt model [20],
obtained from local projective measurements equatorial at angles
0 (for a1, b1) and π=3 (for a2, b2) on the maximally entangled
two-qubit Bell state jΦþi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ, and the

Popescu-Rohrlich box [21].

A B 00 01 10 11

a1 b1 1=2 0 0 1=2
a1 b2 3=8 1=8 1=8 3=8
a2 b1 3=8 1=8 1=8 3=8
a2 b2 1=8 3=8 3=8 1=8

A B 00 01 10 11

a1 b1 1=2 0 0 1=2
a1 b2 1=2 0 0 1=2
a2 b1 1=2 0 0 1=2
a2 b2 0 1=2 1=2 0
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M½hC; si; g� ≔
�
1 if gjC ¼ s;

0 otherwise:

An empirical model e can be represented as a vector
ve ∈ Rm, with the component ve½hC; si� recording the
probability given by the model to the assignment s at
the measurement contextC, eCðsÞ. This vector is a flattened
version of the table used to represent the empirical model
(e.g., Table I). The columns of the incidence matrix,
M½−; g�, are the vectors corresponding to the (noncontex-
tual) deterministic models obtained from global assign-
ments g ∈ OX. Recall that every noncontextual model can
be written as a mixture of these. A probability distribution
on global assignments can be represented as a vector
d ∈ Rn with non-negative components summing to 1,
and then the corresponding noncontextual model is repre-
sented by the vector Md. So a model e is noncontextual if
and only if there exists a d ∈ Rn such that

Md ¼ ve and d ≥ 0:

Note that the first condition implies that d is normalized.
A global subprobability distribution is also represented by

a vector b ∈ Rn with non-negative components, its weight
being given by the dot product 1 · b, where 1 ∈ Rn is the
vectorwhosen components are each1.The followingLP thus
calculates the noncontextual fraction of an empirical model e,
with NCFðeÞ¼1·b�, where b� is an optimal solution:

Find b ∈ Rn

maximizing 1 · b

subject to Mb ≤ ve

and b ≥ 0:

ð3Þ

Violations of generalized Bell inequalities.—We now
provide further justification for viewing the contextual
fraction as a measure of contextuality by relating it to
violations of contextuality-witnessing inequalities.
An inequality for a scenario hX;M; Oi is given by a

vector a ∈ Rm of real coefficients indexed by local assign-
ments hC; si and a bound R. For a model e, the inequality
reads a · ve ≤ R, where

a · ve ¼
X

C∈M;s∈OC

a½hC; si�eCðsÞ:

Without any loss of generality, we can take R to be non-
negative (in fact, even R ¼ 0) as any inequality is equiv-
alent to one of this form. We call it a Bell inequality if it is
satisfied by every noncontextual model. This generalizes
the usual notion of Bell inequality, which is defined for
Bell-type scenarios for nonlocality, to apply to any con-
textuality scenario. If, moreover, it is saturated by some
noncontextual model, the Bell inequality is said to be tight.
A Bell inequality establishes a bound for the value of a · ve

among noncontextual models e. For more general models,
this quantity is limited only by the algebraic bound

∥a∥ ≔
X
C∈M

max fa½hC; si�js ∈ OCg:

Note that we will consider only inequalities satisfying
R < ∥a∥, which excludes inequalities trivially satisfied by
all models and avoids cluttering the presentation with
special caveats about division by 0.
The violation of a Bell inequality ha; Ri by a model e is

maxf0; a · ve − Rg. However, it is useful to normalize this
value by the maximum possible violation in order to give a
better idea of the extent to which the model violates the
inequality. The normalized violation of the Bell inequality
by the model e is

maxf0; a · ve − Rg
∥a∥ − R

:

Theorem 1. Let e be an empirical model. (i) The
normalized violation by e of any Bell inequality is at most
CFðeÞ; (ii) if CFðeÞ > 0, this bound is attained; i.e., there
exists a Bell inequality whose normalized violation by e is
CFðeÞ; (iii) moreover, for any decomposition of the form
(2), this Bell inequality is tight at the noncontextual model
eNC [provided NCFðeÞ > 0] and maximally violated at the
strongly contextual model eSC.
The proof of this result is based on the strong duality

theoremof linear programing [27]. It provides anLPmethod
of calculating a witnessing Bell inequality for any empirical
model e. The symmetric dual of (3) is the following LP:

Find y ∈ Rm

minimizing y · ve

subject to MTy ≥ 1

and y ≥ 0:

ð4Þ

The strong duality theorem says that, if b� is a solution for
(3), then there is a solution y� for (4) satisfying

1 · b� ¼ y� · ve: ð5Þ
Defininga� ≔ jMj−11 − y�, one can showusing (5) that the
Bell inequality determined by a� as the vector of coefficients
and with bound R ¼ 0 satisfies parts (ii) and (iii) of
Theorem 1. A detailed proof is provided in Supplemental
Material [28].
Monotonicity.—A key desideratum of a useful measure

of contextuality is that it be monotonic for the free
operations of a resource theory for contextuality. A fuller
treatment of this subject will be presented in a forthcoming
article by the authors; here, we consider the properties of the
contextual fraction with respect to some of these operations.
We consider the following operations: first, translation of

measurements (including restriction to a smaller set of
measurements, replication of measurements, etc.); second,
coarse-graining of outcomes. Special cases of these give
isomorphic relabeling of measurements and outcomes. We
also consider operations that combine two empirical
models to build a new one. The first of these is probabilistic
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mixing with a weight λ ∈ ½0; 1�. The second is controlled
choice: Given empirical models e and e0 on scenarios
hX;M; Oi and hX0;M0; Oi, respectively, e& e0 is defined
on the scenario hX ⊔ X0;M ⊔ M0; Oi by ðe& e0ÞC ≔ eC
for C ∈ M and ðe& e0ÞC0 ≔ eC0 for C0 ∈ M0. The third is
a product: e ⊗ e0 is an empirical model defined on
the scenario hX ⊔ X0;M⋆M0; Oi, where M⋆M0 ≔
fC ⊔ C0jC ∈ M; C0 ∈ M0g, by ðe ⊗ e0ÞC⊔C0 hs; s0i ≔
eCðsÞe0C0 ðs0Þ for all C∈M, C0 ∈ M0, s ∈ OC, and s0 ∈ OC0

.
These operations can be used to construct any local

empirical model onBell scenarios starting from a very simple
“generator”: a deterministic model over a single measure-
ment. This is illustrated in Supplemental Material [28].
Theorem 2. The contextual fraction is invariant

under relabelings and nonincreasing under translation of
measurements and coarse-graining of outcomes. For the
combining operations, it satisfies the following pro-
perties: (i) CFðλeþð1− λÞe0Þ≤ λCFðeÞþ ð1− λÞCFðeÞ,
(ii) CFðe&e0Þ ¼maxfCFðeÞ;CFðe0Þg, (iii) CFðe ⊗ e0Þ ¼
CFðeÞ þ CFðe0Þ − CFðeÞCFðe0Þ.
A consequence of this result is that, for any of the

combining operations, when e0 is a noncontextual model
(and thus composing with e0 is a free operation), CF acts as
a monotone: The contextual fraction of the new model is at
most that of e (in fact, with equality holding for both choice
and product).
Computational explorations.—General computational

tools in the form of a Mathematica package have been
developed implementing the two LPs described above to
calculate, for any empirical model in any scenario: the (non)
contextual fraction, a decomposition of the form (2), and the
generalizedBell inequality fromTheorem1 (ii) forwhich the
maximal violation is achieved. The package also calculates
quantum empirical models from any (pure or mixed) state
and any specified sets of compatible measurements.
As an example to illustrate the use of this package, we

consider the empirical models obtained from local mea-
surements on various n-qubit states. On each qubit, we

allow the same two local measurements, equatorial on the
Bloch sphere, parametrized by angles ϕ1 and ϕ2. Figure 1
plots the contextual fraction of the resulting models as a
function of these angles.
Computational explorations of this kind can be a useful

tool for guiding research, pointing the way to conjectures
and results (e.g., [29–31]). A more detailed analysis of the
examples from Fig. 1, leading to the characterization of a
family of strongly contextual models arising from n-partite
GHZ states, can be found in Supplemental Material [28].
Applications to quantum computation.—Contextuality

has been associated with quantum advantage in certain
information-processing and computational tasks.Oneuse for
a measure of contextuality is to quantify such advantages.
A computational model in which contextuality has

been associated with an advantage is measurement-based
quantum computation (MBQC). An l2-MBQC is a process
with m classical bits of input and l of output, using an
ðn; 2; 2Þ empirical model (n parties, two measurement
settings per party, two outcomes per measurement) as a
resource. The classical control—which preprocesses the
inputs, determines the flow of measurements by choosing
which sites to measure next and with which measurement
setting (potentially depending on previous outcomes), and
postprocesses to produce the outputs—can perform only
Z2-linear computations. The additional power to com-
pute nonlinear functions thus resides in certain resource
empirical models.
In Ref. [2], Theorem 2, it was shown that if an l2-MBQC

process deterministically calculates a non-Z2-linear Boolean
function f∶2m→ 2l, then the resource is necessarily strongly
contextual. A probabilistic version was also obtained in
Ref. [2], Theorem 3: Contextuality must be present when-
ever a nonlinear function is calculated with a sufficiently
large probability of success. By analyzing that proof, we
extract a sharpened version of this result establishing a
precise relationship between the hardness (nonlinearity) of
the function, the probability of success, and the contextual
fraction.
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FIG. 1. Plots of the contextual fraction for empirical models obtained with projective measurements at ϕ1 and ϕ2 in the X-Y plane for
each qubit on: (a) the Bell state jΦþi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ; (b) jψGHZð3Þi; (c) jψGHZð4Þi, where the n-partite GHZ state (n > 2) is

given by jΦþi ¼ ð1= ffiffiffi
2

p Þðj0i⊗n þ j1i⊗nÞ.
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The average distance between two Boolean functions
f;g∶2m→2l is given by ~dðf;gÞ≔2−mjfi∈2mjfðiÞ≠gðiÞgj.
The average distance of f to the closest Z2-linear function
is denoted by ~νðfÞ.
Theorem 3. Let f∶2m → 2l be a Boolean function and

consider an l2-MBQC that uses the empirical model e to
compute f with average success probability p̄S over all 2m

possible inputs and corresponding average failure proba-
bility p̄F ¼ 1 − p̄S. Then, p̄F ≥ NCFðeÞ~νðfÞ.
Note that for deterministic computation (p̄S ¼ 1) of a

nonlinear function (~ν > 0), we require strong contextuality
[NCFðeÞ ¼ 0], recovering the deterministic result in
Ref. [2]. More generally, for a given nonlinear function,
the higher the desired success probability, the larger
the contextual fraction must be. Additional details, includ-
ing a rigorous presentation and proof, may be found in
Supplemental Material [28].
Similar results can be obtained to quantify advantage in

games, generalizing non-local games on Bell scenarios
[32–36]. A game is specified by n Boolean formulas, one
for each context, which describe the winning condition that
the output must satisfy. If the formulas are k-consistent,
meaning that at most k of them have a joint satisfying
assignment, then the hardness of the game is measured by
ðn − kÞ=n. One can show that p̄F ≥ NCFðeÞðn − kÞ=n,
relating the probability of success, the noncontextual frac-
tion, and the hardness of the task. See [37] for the relation
with Bell inequalities, from which a proof of this result
follows. Details are given in Supplemental Material,
Theorem 4. Further development of these ideas is a topic
for future research.
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