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To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we
implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two
quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized
by servers who are denied information about the computation itself. This concealment is accompanied by a
verification protocol that tests servers’ honesty and correctness. Our demonstration shows the feasibility of
completely classical clients and thus is a key milestone towards secure cloud quantum computing.
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Whereas quantum computers could exponentially out-
perform classical computers for certain computational tasks,
inaccessibility due to implementation complexity would
hinder widespread adoption of quantum computing. Thus,
quantum computation is increasingly being performed “in
the cloud,” such as IBM’s 5-qubit quantum cloud service [1].
In this approach, quantum computing is outsourced from a
client with classical hardware to a server who possesses
expensive quantum hardware. Considering the types of
applications to which quantum computing is likely to be
applied, imformation security is important as clients may
wish to keep the computation perfectly secret from untrusted
servers implementing the quantum computation.

A solution to this issue is offered by blind quantum
computing (BQC) [2], which is a quantum cryptographic
protocol that enables a classical client with limited quantum
technology to delegate a computation to the quantum
server(s) without leaking any information about her com-
putation to the server(s). Thus far various BQC protocols
have been proposed [2-15], and some proof-of-principle
experiments have been performed with photonic qubits
[16-20]. However, all these experimental demonstrations
only support quasiclassical clients. That is, the clients
require the ability to prepare or measure single-qubit states,
but wide use of quantum computing on the cloud would be
much more attractive if clients did not require the ability to
perform quantum tasks. Although using only classical
communication between a classical client and a single
quantum server may be infeasible for secure BQC [21],
classical communication between a classical client and
multiquantum servers can work [14].
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Besides security, verifiability is another important con-
cern for BQC, i.e., the ability of a client to test whether or
not the servers perform the task correctly and honestly. As
the complexity of quantum many-body systems scales up,
verifiability becomes a major experimental challenge, not
only in BQC, but also in quantum chemistry [22], quantum
simulation [23], boson sampling [24], and other quantum
algorithms. Thus, a verification protocol for BQC is
significant not only as a cryptographic protocol but also
for exploring the relation between quantum physics and
computer science.

Here we demonstrate a proof-of-principle implementa-
tion of BQC for completely classical clients. In our
experiment, we realize Shor’s algorithm [25] for factorizing
N = 15 via the framework of verifiable BQC based on the
Reichardt, Unger, and Vazirani protocol [14]. The scheme
employs quantum gate teleportation for computation and
combines the rigidity of Clauser-Horne-Shimony-Holt
(CHSH) tests [14] and stabilizer tests for verification,
thereby providing a method for a client to control quantum
servers classically.

Suppose we are given two quantum servers, Alice and
Bob, that share Einstein-Podolsky-Rosen (EPR) states but
cannot communicate with each other (enforced, e.g.,
through spacelike separation of the devices). The client
Charlie, holding a completely classical device, wants to
delegate quantum computing to the remote servers without
leaking any information about the computation to servers.
He can decompose the circuit into two parts, computation A
and computation B, and send these two tasks to Alice and
Bob, respectively. Alice and Bob operate on their respective
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halves of the shared EPR states according to Charlie’s
commands and return to Charlie the measurement results.
As Alice and Bob cannot communicate with each other,
they cannot learn the results from each other, so this
delegated computation is “blind,” meaning that each server
learns nothing more about the computation than its
length [14].

For the task of factorizing N using Shor’s algorithm, if
we pick a random number a that is coprime to N, Shor’s
algorithm can yield the minimum integer r that satisfies
a"mod N = 1. From this period r, the prime factors of N
are given by the greatest common divisor (GCD) of a’/?+1
and N, which is solved classically. The quantum circuit for
N = 15 and a = 11 is shown in Fig. 1(a) [26]. In fact, The
inverse QFT is unnecessary for any order-2/ circuit [27].
Moreover, two qubits |0), and |1), evolve trivially during
the computation and thus can be omitted. This fact allows
us to simplify the circuit to Fig. 1(b) by omitting obsolete
qubits and operations marked by dotted lines in the circuit
in Fig. 1(a).

To delegate the circuit in Fig. 1(b) to two remote
quantum servers, Charlie decomposes it into two parts
[see Fig. 1(c)] and sends the tasks to Alice and Bob,
respectively. Each observable of Alice (Bob) has eigen-
values £1 such that each outcome a;(b;) reported to
Charlie takes values of 41, where i denotes the ith qubit
of Alice (Bob). By design, computation A performs the first
controlled-NOT (CNOT) gate of the circuit and prepares the
third input state |0) for Bob. If Alice implements compu-
tation A honestly, Bob’s share of EPR states collapses into
|¥)|p), where |¥) is one of the four Bell states, and
1) € {]0).|1)}, according to Alice’s results. In particular,
when Alice reports a; = a, = az = 1, Bob’s state collap-
ses into the desired resource state |¢p) = |®7)|0), where

|®*) = (1/4/2)(]00) £ |11)), which is equivalent to the
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FIG. 1. Quantum circuit for factorizing N = 15 using Shor’s

algorithm. (a) Quantum circuit for N = 15 and @ = 11 [26]. The
modular exponential function is implemented by two CNOT gates,
and the quantum Fourier transformation (QFT) is implemented
by Hadamard rotations and two-qubit conditional-phase gates.
(b) The simplified version of the circuit in (a), omitting the qubits
and operations marked by dotted lines in (a). (c) The scheme of
cloud quantum computing for factorizing N = 15. Each meas-
urement is in the Z basis.

state after the first CNOT gate in the circuit in Fig. 1(b). Then
Bob implements computation B to achieve the second CNOT
gate and measures his second qubit in the Pauli X basis to
output the result of Shor’s algorithm. Bob’s remaining two
qubits contribute nothing to the outcome and are both
measured in the Pauli Z basis as they can be employed in
the validation procedure described below.

When performing such a computation on untrusted
quantum servers, clients also wish to test the honesty of
servers: did they implement the computation as promised?
To realize this test, Charlie randomly switches tasks being
implemented by Alice and Bob between the desired
computation and “dummy” protocols. The dummy proto-
cols are constructed such that Alice and Bob are unable to
distinguish whether they are implementing the proper
computation or the dummy, but such that Charlie is able
to detect if the dummy tasks are being implemented
dishonestly. Via repeated application of this randomized
procedure, Charlie then determines whether Alice and Bob
are being honest. Specifically, Charlie can randomly
command the servers [see Fig. 2(a)] to implement the four
subprotocols below:

1. Computation. As shown in Fig. 1(c), the computation
is realized as the joint evolution of two isolated quantum
servers. In our experiment, computation A and computation
B can be compiled into the setup in Fig. 2(b), where the
logical qubits |0) and |1) are encoded by horizontal (H) and
vertical (V) polarizations of single photons, respectively.
Instead of implementing the standard CNOT gate between
the first and second qubits in computation A, Charlie can
ask Alice to use a polarizing beam splitter to postselect
events where there is exactly one photon exiting each
output [the first two EPR states are transformed into
1/V2(0)40)210)210)5 + 14 1)3]1)F[1)5) after postse-
lection, where A (B) represents Alice (Bob)], and measure
these two photons in the Pauli X basis.

If Alice’s reported results yield aja, = az =1, then
Bob’s share of the EPR states collapses onto the desired
state |¢). The CNOT gate in computation B can be realized
by combining three polarization-dependent beam splitters
(PDBS)—an overlapping PDBS (Ty = 1 and Ty = 1/3),
and two supplementary PDBSs (Ty = 1 and Ty; = 1/3) at
each exit port of the overlapping PDBS, along with two
Hadamard gates (HWP) on the target photon before and
after the PDBS [28]. The different treatment of the CNOT
gates arises because Bob is required to complete the
computation and convey the final outcomes, so he is
instructed to implement the complete Bell measurement.
However, Alice only needs to prepare resource states for
Bob. As long as Alice can prepare the desired states, we
deem her to be honest.

2. CHSH test. Charlie sends random bits A € {0, 1} and
B € {0,1} to Alice and Bob, respectively, which deter-
mines their measurement bases, and they respond with bits
M € {0,1} and N € {0, 1} corresponding to their binary
measurement outcomes [see Fig. 2(c)]. In this test, Alice
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FIG. 2. Experimental setup. (a) Outline of the scheme. Charlie classically interacts with quantum servers Alice and Bob who share
entanglement. Each of the quantum servers is randomly commanded to implement one of the two types of operations, CHSH and
computation A(B). (b) Computation setup. Ultraviolet laser pulses with a central wavelength of 394 nm, pulse duration of 150 fs, and
repetition rate of 80 MHz pass through three f-barium borate (BBO) crystals to produce three polarization-entangled pairs
(1/vV2)(|H)|V) + |V)|H)). A half-wave plate (HWP) is placed at an arm of the entangled pairs to produce EPR states
(1/v/2)(|H)|H) + [V)|V)). To achieve good spatial and temporal overlap, all photons are spectrally filtered with 3-nm bandwidth
filters. The final measurement results are then read out by single-photon detectors with dual-channel structure, which partially eliminates
higher-order events. (c) CHSH test setup. (d) State tomography setup. (e) Process tomography setup.

and Bob “win” if AB =M @ N, and they can win with
probability w* = cos?(r/8) ~ 0.854 if Bob measures in the
Pauli Z basis for B = 0 or Pauli X basis for B = 1, and if
Alice measures [Z + (—=1)4X]/v/2. According to Alice’s
and Bob’s measurement outcomes a and b, i.e., =1, Charlie
sets M and N to O or 1. In contrast, classical servers can win
with probability at most 3/4. In our protocol, Charlie can
also change the strategy to simultaneously swap the
measurement bases of Alice and Bob; that is, Alice

measures Z or X, and Bob measures [Z 4 (=1)2X]/v/2.
According to the rigidity of the CHSH test [14], if the
servers win with probability close to w*, the implement
strategy is close to the ideal strategy. To ensure servers’
honesty, Charlie runs n rounds of CHSH tests with
both servers, and rejects if the servers fail to win at least
(w* — €)n rounds, where & = [1/(2v/2)]\/logn/n is the
error threshold [29,30].

3. State tomography. Charlie asks Alice to implement
computation A while running the CHSH test with Bob [see
Fig. 2(d)]. If Alice honestly implements the command,
Bob’s state collapses to |®*) ® |f). Bob is required to
measure in the bases X1X,Z5 or Z,Z,7Z5, where the first
two bases XX, and Z,Z, are the stabilizers for the Bell
states, and Z3 is the stabilizer of |). In these cases, Bob’s
measurement outcomes are deterministic, depending on
Alice’s results. Thus, Charlie can test whether Alice is
honest according Bob’s measurement outcomes. If Bob

reports the wrong stabilizer syndrome in even a single
round, Charlie can reject. If Alice plays honestly, Charlie
accepts with high probability.

4. Process tomography. Charlie asks Bob to implement
computation B while running the CHSH test with Alice
[see Fig. 2(e)]. If Bob honestly implements the command,
Alice’s state collapses to |f)|¥). Alice is required to
measure in the bases Z;X,X5 or Z,Z,Z5, where the last
two bases, X,X53 and Z,Z3, are the Bell-state stabilizers,
and the first basis Z; is the stabilizer of |f). Therefore, if
Alice reports the wrong stabilizer syndrome in even a single
round, Charlie can reject. If Bob plays honestly, Charlie
accepts with high probability.

Charlie runs protocol 1 with a small probability #, and
another three alternative protocols with probability (1—7)/3
so that servers are not aware of which protocol their
measurements belong to. For instance, from Alice’s per-
spective, she is entirely unaware whether Bob is implement-
ing the CHSH test or computation B. From the CHSH test
and stabilizer test, Charlie can determine whether the servers
are being honest or not. The relationship among #, computa-
tional efficiency, and security parameters are analyzed in
Supplemental Material [30].

To demonstrate the scheme, we employ polarization-
entangled photons |®") generated by spontaneous para-
metric down-conversion using a HWP-sandwiched f-barium
borate (BBO) crystal [34]. For protocol 1, experimental
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Experimental results for honest Alice and Bob. (a) Output of quantum computing for factorizing N = 15, which is determined

by the results of the second photon Bob observed in the subprotocol computation. Theoretical predictions and measured expectation
values are shown as red and blue bars, respectively. (b) The probability that Alice passes the tests of state tomography when Bob
measures in the X, X,Z5 and Z,Z,Z; bases. (c) The probability that Bob passes the tests of process tomography when Alice measures in

the Z,X,X5 and Z,Z,Z5 bases.

results are shown in Fig. 3(a). If Alice and Bob play honestly,
then, with probability ~51.9%, the output is |0), correspond-
ing to a failure. The remaining ~48.1% probability yields
|1). Combining these with the known state of the redundant
qubit |0) g, using classical processing yields the period
r = 2. Thus, GCD(11%2 £1,15) = 3, 5, yielding a suc-
cessful factorization. To quantify the performance of the
CNOT operations realized by the PDBS, we measure process
fidelity [35] for the cNoT gate as 0.87(2) < Fpeess <
0.93(2) (see Supplemental Material [30] for details).

In our experiment, we run n = 6000 rounds of
CHSH tests; then the error threshold is calculated as

e =[1/(2v2)]\/logn/n = 0.014. Two honest quantum
servers win with the probability ~0.846(6), from which &
is calculated as € = 0.007(6)—below the error threshold.
Thus, Charlie accepts the protocol (see Supplemental
Material [30] for more detailed security analysis). On the
other hand, if the quantum servers play dishonestly, for
example, making the angle of the HWP in Bob’s measure-
ment setup always 5° higher than the target angle, they win
with probability ~0.814(5) and thus ¢ = 0.047(5), which is
above the threshold, and Charlie rejects.

Protocol 3 is designed to monitor whether Alice honestly
executes computation A. If Alice plays honestly, Bob’s
measurement outcomes are deterministic, depending on
Alice’s results. Figure 3(b) shows the theoretical and
experimental results. The probability that Alice passes
the tests is 0.92(2) and 0.94(2) when Bob measures in
the X,X,Z5 and Z,Z,Z; bases (see Supplemental Material
[30] for details), respectively. To illustrate that the method
can detect whether Alice is cheating, we consider two
typical potential means of cheating: (1) If Alice deliberately
reports the opposite outcomes of the first qubit, and the
reported results yield a;a, = 1(—1), then Bob’s share of
the EPR state collapses into |®7)|0) (|®*)|0)) instead of
into |®)|0) (J]®7)|0)) so the probability of passing the
tests [see Fig. 4(a)] drops to 0.06(2) when Bob measures in
the X;X,Z; basis and remains at 0.91(2) in the Z,Z,Z;
basis; (2) if Alice’s third measurement basis is X5 instead of

Z5, the probability of passing the tests for X;X,Z; and
Z1Z,7Z5 measurements is 0.47(4) and 0.49(4) [Fig. 4(b)],
respectively. Obviously, Charlie can easily identify that
Alice is dishonest based on Bob’s reported results.

Protocol 4 monitors whether Bob honestly executes
computation B. If Bob plays honestly, Alice’s measurement
outcomes are deterministic, depending on Bob’s results.
Figure 3(c) shows the theoretical and experimental results.
The probability that Bob passes the tests is 0.87(2) and
0.86(2) when Alice measures in the Z;X,X; and Z,Z,7Z;
bases (see Supplemental Material [30] for details), respec-
tively. To demonstrate that the method detects whether Bob is
cheating, we consider two possible circumstances: (1) If Bob
measures the last two qubits in the Z,Z5 basis instead of the
X,Z5 basis, the probability of passing the tests [Fig. 4(c)]
drops to 0.52(4) when Alice measures in the Z; X, X5 basis
and remains at 0.89(3) in the Z, Z,Z5 basis. (2) If Bob’s first
measurement basis is Z; instead of X, the probability of
passing Z;X,X3 and Z,Z,Z; tests is 0.41(4) and 0.47(3)
[Fig. 4(d)], respectively. Thus, Bob’s cheating can easily be
caught.

This scheme is device independent, in that it mitigates
the need for clients to place trust in any preexisting device.
The scheme is theoretically efficient, in the sense that its
number of rounds scales with circuit size n, O(n¢), where ¢
is a constant [11,14]. Subsequent results indicate that
the number of rounds can be reduced if we require only
one-sided device independence [15].

In summary, we experimentally demonstrate secure com-
putation on quantum cloud servers using a photonic setup
where three EPR states are shared between two quantum
servers. In our implementation, the correctness of results can
be tested through verification protocols, based on the rigidity
of the CHSH test and stabilizer tests. Our experiment
introduces the features of multiple servers, device independ-
ence, and, especially, a completely classical client, leading to
a heuristic exploration for future secure distributed quantum
networks in the cloud. This type of encryption is crucial to
enable scalable models for secure, outsourced quantum
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FIG. 4. Experimental result for dishonest Alice and Bob.
(a) Probability that Alice passes the tests of state tomography
when Bob measures in X,X,Z; and Z,Z,Z; bases, if Alice
deliberately reports the opposite results for the first qubit.
(b) Probability that Alice passes the tests of state tomography
when Bob measures in X; X,Z5 and Z,Z,Z5 bases, if Alice’s third
measurement basis is X3 instead of Zs. (c) Probability that Bob
passes the tests of process tomography when Alice measures in
Z1X,X5 and Z,Z,Z5 bases, if Bob measures the last two qubits in
Z,7Z5 instead of the X, Z5 basis. (d) Probability that Bob passes the
tests of process tomography when Alice measures in Z; X, X3 and
Z1Z,7Z5 bases, if Bob’s first measurement basis is Z; instead of X .

computation to emerge, paving the way for the commer-
cialization and widespread adoption of quantum computer
technology.
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