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In a classical world, simultaneous measurements of complementary properties (e.g., position and
momentum) give a system’s state. In quantum mechanics, measurement-induced disturbance is largest for
complementary properties and, hence, limits the precision with which such properties can be determined
simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each
complementary property on a separate copy. However, perfect copying is physically impossible in quantum
mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning.
The coherent portion of the generated clones’ state corresponds to “twins” of the input system. Like perfect
copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins
are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the
input system. For complementary observables, this joint measurement gives the system’s state, just as in the
classical case. We demonstrate this experimentally using polarized single photons.
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At the heart of quantum mechanics is the concept of
complementarity: the impossibility of precisely determin-
ing complementary properties of a single quantum system.
For example, a precise measurement of the position of an
electron causes a subsequent momentum measurement to
give a random result. Such joint measurements are the crux
of Heisenberg’s measurement-disturbance relation [1,2], as
highlighted by his famous microscope thought experiment
in 1927 [3]. Since then, methods for performing joint
measurements of complementary properties have been
steadily theoretically investigated [4–8], leading to seminal
inventions such as heterodyne quantum state tomography
[9,10]. More recently, advances in the ability to control
measurement-induced disturbance have led to ultraprecise
measurements that surpass standard quantum limits [11],
and also simultaneous determination of complementary
properties with a precision that saturates Heisenberg’s
bound [12]. In sum, joint complementary measurements
continue to prove useful for characterizing quantum sys-
tems [13–16] and for understanding foundational issues in
quantum mechanics [11,12,17,18].
In this Letter, we address the main challenge in perform-

ing a joint measurement, which is to circumvent the mutual
disturbance caused by measuring two general noncommut-
ing observables, X and Y. Classically, such joint measure-
ments (e.g., momentum and position) are sufficient to
determine the state of the system, even of statistical
ensembles. In quantum mechanics, these joint measure-
ments have mainly been realized by carefully designing
them to minimize their disturbance, such as in weak
[12–16,18] or nondemolition [7,11,17] measurements. In
order to avoid these technically complicated measurements,
one might instead consider manipulating the system, and in

particular, copying it. Subsequently, one would perform a
standard measurement separately on each copy of the
system. Since the measurements are no longer sequential,
or potentially not in the same location, one would not
expect them to physically disturb one another. Crucially, as
we explain below, the copies being measured must be
correlated for this strategy to work. Hofmann recently
proposed an experimental procedure that achieves this [19].
Following his proposal, we experimentally demonstrate
that a partial-SWAP two-photon quantum logic gate [20] can
isolate the measurement results of two photonic “twins.”
These twins are quantum-correlated (i.e., entangled) copies
of a photon’s polarization state that are ideal for performing
joint measurements.
We begin by considering a physically impossible, but

informative, strategy. Given a quantum system in a state ρ,
consider making two perfect copies ρ ⊗ ρ and then
measuring observable X on copy one and Y on copy
two. In this case, the joint probability of measuring out-
comes X ¼ x and Y ¼ y is Probðx; yÞ ¼ ProbðxÞProbðyÞ
[21]. Since it is factorable into functions of x and y, this
joint probability cannot reveal correlations between the two
properties. Even classically, this procedure would generally
fail to give the system’s state, since such correlations can
occur in, e.g., statistical ensembles. Less obviously, these
correlations can occur in a single quantum system due to
quantum coherence [4]. In turn, the lack of sensitivity to
this coherence makes this joint measurement information-
ally incomplete [6], and thus this simplistic strategy is
insufficient for determining quantum states [22]. Further
confounding this strategy, the no-cloning theorem prohibits
any operation that can create a perfect copy of an arbitrary
quantum state, ρ↛ρ ⊗ ρ [24]. In summary, even if this
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strategy were allowed in quantum physics, it would not
function well as a joint measurement.
Although perfect quantum copying is impossible, there

has been extensive work investigating “cloners" that
produce imperfect copies [25]. Throughout this Letter,
we consider a general “1 → 2 cloner.” It takes as an input an
unknown qubit state ρa along with a blank ancilla Ib=2 (I is
the identity operator), and attempts to output two copies of
ρ into separate modes, a and b.
We now consider a second strategy, one that utilizes a

trivial version of this cloner by merely shuffling the modes
of the two input states. This can be achieved by swapping
their modes half of the time, and for the other half, leaving
them unchanged. That is, one applies with equal likelihood
the SWAP operation (Sab: ρaIb=2 → Iaρb=2), or the identity
operation (Iab ¼ Ia ⊗ Ib):

ρaIb=2 → ðρaIb þ IaρbÞ=4≡ tab: ð1Þ

Each output mode of the trivial cloner tab contains an
imperfect copy of the input state ρ. Jointly measuring X and
Y, one on each trivial clone, yields the result
Probðx; yÞ ¼ ½ProbðxÞ þ ProbðyÞ�=4. In contrast to a joint
measurement on perfect copies, this result exhibits corre-
lations between x and y. These appear because in any given
trial, only one of the observables is measured on ρ, while
the other is measured on the blank ancilla. Hence, the
apparent correlations are an artifact caused by randomly
switching the observable being measured, and are not due
to genuine correlations that could be present in ρ. While
now physically allowed, this joint measurement strategy is
still insufficient to determine the quantum state ρ.
In order to access correlations in the quantum state, we

must take advantage of quantum coherence. Instead of
randomly applying Sab or Iab as in trivial cloning, we
require the superposition of these two processes, i.e., the
coherent sum:

Πj
ab ¼

1

2
ðIab þ jSabÞ; ð2Þ

where now we are free to choose the phase j. Πj is a
generalized symmetry operation that can implement a
partial-SWAP gate [20]. For j ¼ þ1 (−1), this operation
is a projection onto the symmetric (antisymmetric) part of
the trivial cloner input, ρaIb=2. The symmetric subspace
only contains states that are unchanged by a SWAP oper-
ation. A projection onto this subspace increases the relative
probability that ρa and the blank ancilla are identical. In
fact, it has been proven that a symmetric projection on the
trivial cloner input is the optimal cloning process, since it
maximizes the fidelity of the clones (i.e., their similarity to
ρ) [26–28].
This brings us to our third and final strategy. Optimal

cloning achieves more than just producing imperfect
copies: the clones are quantum-correlated, i.e., entangled

[26]. This can be seen by examining the output state of the
optimal cloner (i.e., with j ¼ 1):

ojab ¼
2

3
ðΠj

abρaIbΠ
j†
abÞ ¼

2

3
tab þ

1

3
Re½jcab�; ð3Þ

where cab ¼ SabρaIb and Re½s� ¼ ðsþ s†Þ=2. While the
first term is two trivial clones, the second term is the
coherent portion of the optimal clones, and is the source of
their entanglement. Considered alone, cab corresponds to
two “twins” of ρ. Like perfect copies, any measurement on
either twin gives results identical to what would be obtained
with ρ [19]. However, the twins are entangled. As such, it is
important to realize that they are very different from the
uncorrelated perfect copies we considered in the first
strategy. Relative to these (i.e., ρ ⊗ ρ), performing the
same joint measurement as before, but on the twins cab,
provides more information about ρ. Measuring X on one
twin and Y on the other yields the expectation value
hxyiρ ¼ TrðxyρÞ, where x ¼ jxihxj and y ¼ jyihyj are
projectors onto the eigenstates of observables X and Y,
respectively. Classically, this result would be interpreted as
a joint probability Probðx; yÞ. However, due to
Heisenberg’s uncertainty principle, hxyiρ has nonclassical
features that shield precise determination of both X and Y.
In fact, hxyiρ is a “quasiprobability" distribution much like
the Wigner distribution [4], and has similar properties such
as being rigorously equivalent to the state ρ [15]. Unlike the
Wigner distribution, it is generally complex since xy is not
an observable (i.e., it is non-Hermitian). Although the
measurements of X and Y are performed independently on
each twin, because the twins are entangled, it is equivalent
to simultaneously measuring the same two observables on a
single copy of ρ. This approach is complementary to other
joint measurement strategies for state determination in
which the measurement itself is entangling, while the
copies being measured are separable [29,30].
Performing a joint measurement directly on twins cannot

be achieved in a physical process. This is likely part of the
reason why previous theoretical investigations concluded
that optimal cloners were not ideal for joint measurements
[26,33,34]. However, in a joint measurement on optimal
clones, Hofmann showed that the contribution from the
twins can be isolated from that of the trivial clones [19].
This is because changing the phase j affects only the
coherent part of the cloning process. Thus, by adding joint
measurement results obtained from the optimal cloner with
different phases j, we can isolate the contribution from the
twins and measure hxyiρ [31].
The experiment is shown schematically in Fig. 1.

A photonic system lends itself to optimal cloning because
the symmetry operation Πj in Eq. (2) can be implemented
with a beam splitter (BS). If two indistinguishable photons
impinge onto different ports of BS1, Hong-Ou-Mandel
interference occurs and the photons always “bunch” by
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exiting BS1 from a single port. By selecting cases where
photons bunch (antibunch), one implements the symmetry
projector Πþ1 (Π−1) [35]. This enabled previous exper-
imental demonstrations of optimal cloners for both polari-
zation [36] and orbital angular momentum [37,38] states.
However, we must also implementΠ�i. Following a similar
strategy as Refs. [20,39], we use an interferometer to
coherently combine the symmetric and antisymmetric
projectors, since Π�i ¼ ðe�iπ=4Πþ1 þ e∓iπ=4Π−1Þ= ffiffiffi

2
p

.
This is achieved by interfering at BS2 the cases where
the photons bunched at BS1 with cases where they
antibunched at BS1. In summary, this provides an exper-
imental procedure to vary the phase j and thereby isolate
the joint measurement contribution of the twins from that of
the trivial clones.
We experimentally verify that this procedure works by

performing a joint measurement on trivial clones tab and
showing that its outcome does not contribute to hxyiρ. In
particular, we scan the delay between ρa and Ib=2 at BS1.
When the delay is zero, we implement the symmetry
operator Πj. When the delay is larger than the coherence
time of the photons, the BS does not discriminate the
symmetry of the two-qubit input state. Thus, it simply
shuffles the modes of both qubits and produces trivial
clones tab. We test the procedure by measuring
hxyiρ ¼ hdhiρ, where d and h are diagonal and horizontal
polarization projectors, respectively. We use an input state
ρa ¼ h, for which one expects hdhiρ ¼ TrðdhhÞ ¼ 0.5. In
Fig. 2, we show that for large delays hdhiρ ¼ 0, whereas for
zero delay, it obtains its full value. This shows that the

procedure has effectively removed the contribution of the
trivial clones to the optimal clone state in Eq. (3), and so the
joint measurement result is solely due to the twins.
A joint measurement on twins of ρ can reveal correla-

tions between complementary properties in ρ. We measure
the entire joint quasiprobability distribution hxyiρ for the
complementary polarization observables x ¼ fd; ag using
diagonal and antidiagonal projectors, and y ¼ fh; vg using
horizontal and vertical projectors. This is repeated for a
variety of different input states ρ. For the input state
indicated by the dashed line in Fig. 3(a), correlations
can be seen in Imhxyiρ, as shown in Fig. 3(b). With the
ability to exhibit correlations, hxyiρ is now a complete
description of the quantum state ρ [31]. In particular, the
wave function of the state [see Fig. 3(a)] is any cross
section of hxyiρ. Moreover, the density matrix [see
Fig. 3(c)] can be obtained with a Fourier transform of
hxyiρ. This is the key experimental result. In the classical
world, simultaneously measuring complementary proper-
ties gives the system’s state. This result demonstrates that
simultaneously measuring complementary observables on
twins, similarly, gives the system’s state.
In addition to its fundamental importance, our result has

potential practical advantages as a state determination
procedure. It is valid for higher dimensional states [31]
for which standard quantum tomography requires prohibi-
tively many measurements. Specifically, a d-dimensional
state typically requires Oðd2Þ measurements in OðdÞ bases
to be reconstructed tomographically. In contrast, here
the wave function is obtained directly (i.e., without a

FIG. 1. Schematic of experimental setup. A photon in a
polarization state ρa and a photon in a blank state Ib=2 enter
an interferometer containing removable beam blocks (dotted
outline). Complementary observables x and y are jointly mea-
sured by counting coincidences at detectors D1 and D2. When the
red (blue) path is blocked, we postselect on the case where the
photons exit the first beam splitter BS1 from the same (opposite)
port and perform a symmetric projector Πþ1 (antisymmetric
projector Π−1), thus making two optimal clones of ρ. With no
path blocked and a phase difference of φ ¼ �π=2 between paths,
we coherently combine both cases and performΠ�i, respectively.

(a)

(b)

FIG. 2. Transition from trivial to optimal cloning. A horizontal
photon ρa ¼ h is sent into the cloner. We jointly measure
complementary observables d and h, one on each clone, and
plot the real (a) and imaginary (b) parts of hdhiρ. For large delays,
only trivial clones are produced. Since they contain no informa-
tion about hdhiρ, our procedure cancels their contribution
to the joint measurement result. At zero delay, optimal clones
are produced. We isolate the contribution of the twins to the
joint measurement, yielding the desired value of hdhiρ ¼ 0.5.
The bold lines are theory curves calculated for intermediate
delays [31]. Error bars are calculated using Poissonian counting
statistics.
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reconstruction algorithm) from 4d experimental measure-
ments of only two observables, X and Y.
Our results uncover striking connections with other joint

measurement techniques, despite the physics of each
approach being substantially different. For example, the
joint quasiprobability hxyiρ is also the average outcome of
another joint measurement strategy: the weak measurement
of y followed by a measurement of x on a single system ρ
[15,16,19]. Furthermore, in the continuous-variable ana-
logue of our work, measurements of complementary
observables on cloned Gaussian states [40] give a dif-
ferent, but related, quasiprobability distribution for the
quantum state known as the Q function [10]. Finally, the
result of a joint measurement on phase-conjugated
Gaussian states can be used in a feedforward to produce
optimal clones [41]. These connections emphasize the
central role of optimal cloning in quantum mechanics
[24,28] and clarify the intimate relation between joint
measurements of complementary observables and deter-
mining quantum states [4,6].
We anticipate that simultaneous measurements of non-

commuting observables can be naturally implemented in
quantum computers using our technique, since the oper-
ation Πj can be achieved using a controlled-SWAP quantum
logic gate [19,42]. As joint measurements are pivotal in
quantum mechanics, this will have broad implications
for state estimation [13–16], quantum control [17], and
quantum foundations [12,18]. For instance, we antici-
pate that our method can be used to efficiently and
directly measure high-dimensional quantum states that
are needed for fault-tolerant quantum computing and
quantum cryptography [38].
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