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We observe multistep condensation of sodium atoms with spin F ¼ 1, where the different Zeeman
components mF ¼ 0;�1 condense sequentially as the temperature decreases. The precise sequence
changes drastically depending on the magnetization mz and on the quadratic Zeeman energy q (QZE) in an
applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal
spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions.
For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the
ideal case, leading, for instance, to condensation inmF ¼ �1, a phenomenon that cannot occur for an ideal
gas with q > 0.
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Multicomponent quantum fluids described by a vector
or tensor order parameter are often richer than their scalar
counterparts. Examples in condensed matter are superfluid
3He [1] or some unconventional superconductors with
spin-triplet Cooper pairing [2]. In atomic physics, spinor
Bose-Einstein condensates (BEC) with several Zeeman
components mF inside a given hyperfine spin F-manifold
can display nontrivial spin order at low temperatures [3–6].
The macroscopic population of the condensate enhances
the role of small energy scales that are negligible for normal
gases. This mechanism (sometimes termed Bose-enhanced
magnetism [6]) highlights the deep connection between
Bose-Einstein condensation and magnetism in bosonic
gases, and raises the question of the stability of spin order
against temperature.
In simple cases, magnetic order appears as soon as a BEC

forms. Siggia and Ruckenstein [7] pointed out for two-
component BECs [7] that a well-defined relative phase
between the two components implies a macroscopic trans-
verse spin. BEC and ferromagnetism then occur simulta-
neously, provided the relative populations can adjust freely.
A recent experiment confirmed this scenario for bosons with
spin-orbit coupling [8]. This conclusion was later general-
ized to spin-F bosons without [9] or with spin-independent
[10] interactions. These results indicate that without addi-
tional constraints, bosonic statistics favors ferromagnetism.
In atomic quantum gases with F > 1=2, this type of

ferromagnetism competes with spin-exchange interactions,
which may favor other spin orders such as spin nematics
[6]. Spin-exchange collisions can redistribute populations
among the Zeeman states [11–13], but are also invariant
under spin rotations. The allowed redistribution processes
are therefore those preserving the total spin, such as
2 × ðmF ¼ 0Þ ↔ ðmF ¼ þ1Þ þ ðmF ¼ −1Þ. For an iso-
lated system driven to equilibrium only by binary collisions
(in contrast with solid-state magnetic materials [14]), and

where magnetic dipole-dipole interactions are negligible (in
contrast with dipolar atoms [15]), the longitudinal mag-
netization mz is then a conserved quantity. This conserva-
tion law has deep consequences on the thermodynamic
phase diagram.
The thermodynamics of spinor gases with conserved

magnetization has been extensively studied theoretically
using various assumptions and methods [16–22]. A generic
conclusion is that Bose-Einstein condensation occurs in
steps, where BEC occurs first in one specific component
and magnetic order appears at lower temperatures when
two or more components condense. Natural questions are
the number of steps that can be expected, and the nature of
the magnetic phases realized at different temperatures.
In this Letter, we report on the observation of multistep

condensation in an antiferromagnetic F ¼ 1 condensate of
sodium atoms. Figure 1 illustrates four situations that occur
when lowering the temperature starting from a normal Bose
gas. Without loss of generality, we focus in this work on
the case of positive magnetization, given that the case of
mz < 0 can be deduced by symmetry. In all cases with
mz ≠ 0, we find a sequence of transitions where different
Zeeman components condense at different temperatures.
Depending on the applied magnetic field B and on the
magnetization, we find either two or three condensation
temperatures. The purpose of this Letter is to explore this
rich landscape of transitions in a bosonic spinor system and
to elucidate the role of atomic interactions.
The present work is to the best of our knowledge the

first comprehensive measurement of thermodynamic prop-
erties of spinor condensates with conserved magnetization.
Previous experimental works exploring finite temperatures
in spinor gases mostly studied spin dynamics in thermal
gases [23–26] or demonstrated cooling of a majority
Zeeman component by selective evaporation of the minor-
ity components [27,28]. The realization of dipolar spinor
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gases with free magnetization [15] was limited to the study
of spin-polarized condensed phases in equilibrium due to
dipolar relaxation. More recently, a gas of spin excitations
in a spin-polarized (mz ≈ 1) ferromagnetic Bose-Einstein
condensate was observed to equilibrate and even condense
at sufficiently low temperatures [29].
Our experiments are performed with ultracold 23Na

atoms confined in a crossed optical dipole trap (ODT).
The longitudinal magnetization mz ¼ ðNþ1 − N−1Þ=N acts
as an external control parameter independent of the
externally applied magnetic field B. Here, NmF

is the
reduced population in Zeeman state mF and N the total
atom number. We vary mz between unmagnetized (mz ≈ 0)
and fully magnetized samples (mz ≈ 1) using a preparation
sequence performed far above Tc [30,31]. An applied
magnetic field B shifts the single-atom energy by ΔEmF

¼
pmF þ qðm2

F − 1Þ. The conservation of magnetization
makes the linear Zeeman effect ∝ p irrelevant in the
equilibrium state. The quadratic Zeeman energy (QZE),
which lowers the energy of mF ¼ 0 with respect to
mF ¼ �1, is the relevant term and is given by q ¼ αqB2

with αq=h ≈ 277 Hz=G2 for sodium atoms.
The depth V0 of the ODT determines the temperature T

and total atom number N for a given V0. We find that
the magnetization mz also varies with V0 (by up to 15%), a
by-product of evaporative cooling. Once a condensate
forms in one of the Zeeman components, evaporation tends

to eliminate preferentially atoms in the other Zeeman states.
The evaporative cooling dynamics is very slow compared
to the microscopic thermalization time on which the gas
returns to thermal equilibrium. As a result, the kinetic
equilibrium state for the quantum gases studied in this
work is still determined by a magnetization-conserving
Hamiltonian. Furthermore, the ODT is tight enough such
that a condensate forms in the so-called single-mode
regime [44], where the spatial shape of the condensate
wave function is independent of the Zeeman state. In the
following, we characterize our data for a given value of q by
an evaporation “trajectory” ðN; T;mzÞV0

, taking four exper-
imental realizations for each point in the trajectory.
Absorption images as shown in Fig. 1 are recorded after

3 ms of expansion in an applied magnetic field gradient
[31]. We perform a fit to a bimodal distribution for each
component to extract the temperature, the populations NmF

,
and the condensed fraction fc;mF

per component [31]. We
found that low condensed fractions < 5% are difficult to
detect with the fit algorithm due to a combination of low
signal-to-noise ratio and the complexity of fitting the three
Zeeman components simultaneously. The signature of
BEC, the appearance of a dense, narrow peak near the
center of the atomic distribution, can instead be tracked by
monitoring the peak optical density (OD) taken as a proxy
for the condensed fraction [45]. This procedure avoids
relying on bimodal fits or other indirect analyses with
uncontrolled systematic biases.
Figure 2 shows such a measurement for a particular

evaporation trajectory. The peak OD increases sharply
when Bose-Einstein condensation is reached, demonstrat-
ing in this particular example, a two-step condensation
where mF ¼ þ1 condenses first, followed by mF ¼ 0. For

(a) (b) (c) (d)

FIG. 1. Illustration of stepwise Bose-Einstein condensation
in antiferromagnetic spin-1 gases. Each column is formed by
juxtaposing absorption images of spin distributions with mono-
tonically decreasing temperature T from top to bottom. The
quadratic Zeeman energy q and low-T magnetization mz are
indicated at the top of each column. (a) Only mF ¼ 0 condenses
(mF ¼ 0;�1 are the three Zeeman states). (b) (c) For low (high)
magnetizations, mF ¼ 0 (mF ¼ þ1) condenses first followed by
mF ¼ þ1 (mF ¼ 0). (d) For small q and high mz, mF ¼ þ1
condenses first followed by mF ¼ −1, while mF ¼ 0 does not
condense.

FIG. 2. Evolution of peak optical density with trap depth for a
particular evaporation trajectory with q=h ≈ 69 Hz and mz ≈ 0.3
at the highest temperature. For these parameters, the mF ¼ þ1
component condenses first (at a temperature Tc;1 ≈ 1.8 μK),
followed by the mF ¼ 0 component (at a temperature Tc;2 ≈
560 nK). No condensate was detected in the mF ¼ −1 compo-
nent. The curves for mF ¼ þ1 and mF ¼ 0 have been shifted
vertically by 0.2 and 0.1 for clarity. The error bars denote
statistical uncertainties at a 66% confidence level. The solid
lines indicate the piecewise linear fits used to determine the
critical trap depths.
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a given evaporation trajectory, we identify the critical trap
depth V0;c where condensation is reached by a piecewise
linear fit to the data, taking the intercept point as the
experimentally determined V0;c (see Fig. 2). We interpolate
numerically the atom number, magnetization, and temper-
ature to obtain the critical values Nc, Tc, mz;c from V0;c.
Figure 3 summarizes the results of this work. We show the

peak optical density for each Zeeman component and each
value of q in a ðT −mzÞ plane [Figs. 3(a)–3(c), 3(e)–3(g),
and 3(i)–3(k)]. In this plot, all data taken at a given QZE q
are binned with respect to magnetization and temperature.
The domains where condensation occurs appear in light
colors. For convenience, the temperature is scaled to the
critical temperature of a single-component ideal gas
kBTc;id ¼ ℏω̄½N=ζð3Þ�1=3, with ω̄ the geometric average
of the trap frequencies and ζ the Riemann zeta function
[46]. The same plot also shows the measured critical
temperatures [Figs. 3(d), 3(h), and 3(l)] [47]. The phenome-
non of sequential condensation is always observed for
mz ≠ 0, but the overall behavior changes drastically with q.
We first discuss the caseswith largestQZE,q=h ≈ 8.9 kHz

[Figs. 3(a)–(d)] and q=h ≈ 69 Hz [Figs. 3(e)–3(h)]. For

q=h ≈ 8.9 kHz and highly magnetized samples, the majority
componentmF ¼ þ1 condenses first at a critical temperature
Tc;1, followed by themF ¼ 0 component at a lower temper-
ature Tc;2. For low magnetizations, the condensation
sequence is reversed. For q=h ≈ 69 Hz, we observe only
one sequence, a two-step condensation with mF ¼ þ1 first
and mF ¼ 0 second.
This behavior can be understood qualitatively from

ideal gas theory, taking the QZE and the conservation of
magnetization into account [19]. For ideal gases, BEC
occurs when the chemical potential μ equals the energy of
the lowest single-particle state [46]. The same criterion
holds for a spin-1 gas with μ0 ¼ μ and μ�1 ¼ μ� λ, where
λ is a Lagrange multiplier enforcing the conservation ofmz.
For mz ¼ 0 (λ ¼ 0) and q > 0, the QZE lowers the energy
of mF ¼ 0, which is therefore the first component to
condense when μ ¼ −q. For mz > 0, λ is positive and
increases with mz. The energetic advantage ofmF ¼ 0 is in
balance with the statistical trend favoring the most popu-
lated component mF ¼ þ1. Eventually, this trend takes
over at a “critical” value m�

z (where λ ¼ q). For mz > m�
z,

the mF ¼ þ1 component condenses first.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 3. Thermodynamic phase diagram of an antiferromagnetic spin F ¼ 1 Bose gas. The peak optical density of each Zeeman
component is reported for the entire set of data at each value of the QZE—q=h ¼ 8.9 kHz (a)–(c), 69 Hz (e)–(g), and q ¼ 2.8 Hz (i)–(k).
The temperature is normalized to Tc;id, the critical temperature of a single-component ideal Bose gas with the same number of atoms.
The grayed areas indicate the absence of data in the corresponding regions. The right column (d), (h), (l) shows the measured critical
temperatures of the mF ¼ þ1; 0;−1 Zeeman components (red, gray, and blue markers, respectively). The solid (dashed) lines are the
predictions of a Hartree-Fock (HF) model with spin-independent interactions (ideal gas theory). The dotted line in k shows the expected
Tc;2 where mF ¼ 0 condenses according to the HF model.
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Coexisting mF ¼ 0 and mF ¼ �1 components with
a well-defined phase relation correspond to a nonzero
transverse spin hŜxþ iŜyi≠0 (“transverse magnetized”
phase—M⊥). For large q, the condensate is reduced to an
effective two-component system mF ¼ 0;þ1 with mF ¼
−1 mostly spectator. The case mz ¼ m�

z (μ0 ¼ μþ1) realizes
the Siggia-Ruckenstein (S-R) scenario, where condensation
and ferromagnetic behavior appear simultaneously. Away
from that point, the S-R picture breaks down (μ0 ≠ μþ1),
and sequential condensation takes place.
Figures 3(d) and 3(h) show the critical temperatures and

compare them to ideal gas theory. Although the general
trends in the theory are the same as in the experiment, we
observe a systematic shift of Tc;1 and Tc;2 towards lower
temperatures and an experimental “critical”m�

z ∼ 0.3 larger
than the ideal gas prediction. The behavior for q=h ≈ 69 Hz
[Figs. 3(e)–3(h)] is qualitatively similar to the largest q
case, but with a small m�

z that cannot be resolved exper-
imentally (the ideal gas theory predicts ≈0.002).
Repulsive interactions between the atoms can be

expected to lower the critical temperatures as in single-
component gases [48], with an enhanced shift of Tc;2 due to
the presence of a condensate. We use a simplified version of
Hartree-Fock (HF) theory to make quantitative predictions
[22]. Our self-consistent calculations include the trap
potential in a semiclassical approximation and treat the
interactions as spin independent. These approximations are
valid only above Tc;2, where at most, one component
condenses [31]. As a result, the HF model cannot make any
prediction for the low-temperature behavior below Tc;2.
The results of the HF calculations, performed for atom
numbers and trap frequencies matching the experimental
values [31], are shown in Fig. 3. The HF model qualita-
tively accounts for the experimental data, explaining, in
particular, the strong downwards shift of Tc;2 for all q and
the shift of m�

z to higher values for q=h ≈ 8.9 kHz. The
residual discrepancy around 7%–8% could be partially
explained by finite size and trap anharmonicity effects not
included in the Hartree-Fock calculation [31].
At the lowest field we studied, q=h ≈ 2.8 Hz

[Figs. 3(i)–3(l)], we observe a change in the nature of
Tc;2. For high values of mz, Tc;2 corresponds to condensa-
tion into mF ¼ −1 while mF ¼ 0 remains uncondensed.
This phenomenon is incompatible with ideal gas theory
[16,19] and with our HF model with spin-independent
interactions. It corresponds to a change of the magnetic
ordering appearing below Tc;2. While coexisting mF ¼ 0

and mF ¼ þ1 components form a M⊥ phase with
hŜx þ iŜyi ≠ 0, coexisting mF ¼ �1 components corre-
spond to a phase with hŜx þ iŜyi ¼ 0 but where the spin-
rotational symmetry around z is broken by a nonzero
spin-quadrupole tensor (“quasispin nematic” phase -qSN).
At T ¼ 0 and in the single-mode regime, the
M⊥-qSN transition occurs at a critical magnetization

mz;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ½1 − ðq=UsÞ�2
p

, with Us ≤ q the spin-
dependent interaction energy [49]. When q > Us, there
is no phase transition and only the M⊥ phase is present.
This explains the qualitative difference between the data
for q=h ¼ 2.8 Hz and the other two values. We estimate
Us=h≲ 50 Hz and mz;crit ≈ 0.3 for a BEC without thermal
fraction [30]. This agrees well with the lowest temperature
measurements reported in Figs. 3(j)–3(k).
In the experimental data in Figs. 3(i)–3(l), the region of

the phase diagram occupied by the M⊥ phase shrinks with
increasing temperature. In fact, we find that mF ¼ −1
condenses at Tc;2 for all parameters we have explored, with
mF ¼ 0 condensing at a third, lower critical temperature
(except for mz ≈ 0, where all components appear to con-
dense together within the accuracy of our measurement).
Finally, the dashed line in Fig. 3(k) shows Tc;2 predicted by
the HFmodel with spin-independent interactions. Although
the model incorrectly predicts that mF ¼ 0 should con-
dense below Tc;2, the predicted transition closely matches
the observed boundary between single component mF ¼
þ1 BEC and qSN mF ¼ �1 BEC. This indicates that the
transition line itself (but not the magnetic order below it) is
determined by the thermal component alone.
In conclusion, we have studied the finite-T phase diagram

of a spin-1 Bose gas with antiferromagnetic interactions.
For condensates in the single-mode regime, we observed a
sequence of transitions, two for high QZE and three for low
QZE, with the lower two leading to different magnetic
orders. We have found that a simplified HF model repro-
duces the trends observed in the variations of the critical
temperatures Tc;1 and Tc;2 with magnetization and QZE. A
more complete theoretical analysis accounting for all exper-
imental features—in particular, the harmonic trap, which is
crucial to stabilize an antiferromagnetic condensate in a
single spatial mode [44]—and elucidating the exact nature of
the low-temperature transitions for low QZE remains open.
A natural extension of this work would be to study the
critical properties of the observed finite-T transitions, in
particular, near mz ¼ m�

z and between the M⊥ and qSN
phases at very low q. Two-dimensional systems provide
another intriguing direction to explore. Several Berezinskii-
Kosterlitz-Thouless transitions mediated either by vortices or
spin textures have been predicted [50,51]. We expect that
such topological features will further enrich the already
complex phase diagram observed in three dimensions.
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