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Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly
interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-
dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different
due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the
condensate presents not only a modified density dependence, but it may even change from attractive to
repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous
quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar
solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of
three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily
probed in current experiments with magnetic atoms.
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Introduction.—Quantum fluctuations introduce a shift of
the ground-state energy of a Bose gas, which at first order is
given by thewell-knownLee-Huang-Yang (LHY) correction
[1]. However, in the weakly interacting regime, experiments
on Bose-Einstein condensates are well described within the
mean-field approximation. The situation may be crucially
different in the presence of competing interactions, as
recently discussed in the context of Bose-Bose mixtures
[2]. In that scenario, the interplay between inter- and intra-
species interactions results, at the verge of mean-field
instability, in a dominant LHY correction well within the
weakly interacting regime. The LHY correction may stabi-
lize a collapsing condensate, resulting in the formation of
quantum droplets, a novel ultradilute liquid whose surface
tension is provided by purely quantum effects.
Dipolar condensates, formed by particles with large

magnetic or electric dipolar moments, are also character-
ized by competing interactions, in this case short-range and
dipole-dipole interactions. Indeed, recent experiments on
highly magnetic atoms have revealed the crucial role played
by quantum fluctuations at the mean-field instability,
showing for the first time the formation of quantum
droplets [3], which may remain self-bound even in the
absence of external trapping [4]. Quantum stabilization and
droplet formation have attracted wide theoretical and
experimental attention [5–12], being a general phenome-
non that is expected to characterize not only condensates of
magnetic atoms, but the whole rapidly developing field of
strongly dipolar gases [13,14].
In Bose-Bose mixtures and in dipolar condensates, quan-

tum stabilization stems from the compensation between the
attractive residual mean-field interaction, proportional to the
3D density n3D, and the repulsive LHY correction, which in
both systems is proportional to n3=23D [2,15]. As a result, there

is a critical density at which both contributions compensate.
Quantum fluctuations play an even more intriguing role in
lower dimensions. In particular, droplets are stabilized for a
sufficiently low density in 1D Bose-Bose mixtures [16],
against melting rather than collapse, by the competition of a
residual repulsive mean-field term, proportional to the 1D
density n1D, and the attractive LHY correction, proportional
to −n1=21D .
Whereas beyond-mean-field effects in 3D Bose-Bose

mixtures and dipolar condensates are very similar due to
the almost identical density dependence of the quantum
correction, we show in this Letter that quantum fluctuations
lead in quasi-1D dipolar condensates to a strikingly different
physics compared to their nondipolar counterparts. This
difference stems from thepeculiarmomentumdependence of
the dipole-dipole interactions in quasi-1D geometries [17].
As a result, not only is thedensity dependenceof thequantum
corrections very different, but even its sign may change
due to the remarkable role played by transversal directions
in dipolar gases well within the 1D regime. The anomalous
quantum corrections change the nature of quantum
stabilization and strongly influence the physics of solitons.
We also show that, whereas three-body correlations present
the same density dependence in 3D dipolar and nondipolar
condensates [18], they display in 1D a radically different
dependence.
Dipolar interaction in 1D.—We consider bosons with

massM and magnetic moment μ⃗D, although our results also
apply for electric dipoles. The system is strongly confined
on the xy plane by an isotropic harmonic trap of frequency
ω⊥, but it is untrapped along z. We assume that the
chemical potential jμj ≪ ℏω⊥, and hence the condensate,
remains kinematically 1D such that its wave function splits
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as Ψðr⃗Þ ¼ ψðx; yÞϕðzÞ, with ψðx; yÞ ¼ e−ðx2þy2Þ=2l2⊥=
ffiffiffi
π

p
l⊥

the ground state of the transversal trap, with l2⊥ ¼ ℏ=Mω⊥.
After integrating over x and y, the interaction between
particles in the condensate acquires a momentum depend-
ence k of the form

~V1DðkÞ ¼ g1Df1þ ϵdd½3Fð0; k2l2⊥=2Þ − 1�g; ð1Þ

with Fðj; σÞ≡ σjþ1eσΓð−j; σÞ [17], where Γð−j; σÞ is the
incomplete Gamma function. Short-range interactions
are characterized by the 1D coupling constant g1D ¼
g3D=2πl2⊥, where g3D ¼ 4πℏ2a=M, with a > 0 the s-wave
scattering length. Assuming μ⃗D along z, ϵdd ¼ μ0μ

2
D=3g3D

is the ratio between the strengths of the dipolar and contact
interactions [19], with μ0 the vacuum permeability. This 1D
condition jμj=ℏω⊥ ≪ 1 demands j1 − ϵddj ≪ 1=2n1Da, a
condition satisfied in all the calculations in this Letter [20].
LHY correction.—Single particle excitations, ðnr;m; kÞ,

are characterized by their radial quantum number nr,
angular momentum m, and axial linear momentum k. In
1D contact-interacting systems, transversal excitations,
with ðnr;mÞ ≠ ð0; 0Þ, play a negligible role in beyond-
mean-field corrections. This may be crucially different in
dipolar gases. In the weakly interacting regime, the main
processes involving condensed and excited particles are
sketched in Fig. 1. A collision between a particle in
ðnr;m; kÞ and one in the condensate (0, 0, 0) (left) preserves
bothm and k but may change the radial number into n0r. On
the other hand two condensed particles may collide (right)
and create excitations in ðnr;m; kÞ and ðn0r;−m;−kÞ. Both
processes are characterized by the interaction energy [21]

½ÛmðkÞ�nr;n0r ¼ g1Dn1DCnr;n0r;mF

�
nrþn0rþm;

k2l2⊥
2

�
; ð2Þ

where Cnr;n0r;m ¼ 6ð−1Þnrþn0r=2nrþn0rþmþ1×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnrþn0rþm

nr
Þðnrþn0rþm

n0r
Þ

q
, and we have considered for simplicity

ϵdd ¼ 1 [22]. It is crucial that, although for ϵdd ¼ 1 the
compensation of dipolar and contact interactions results
in an ideal 1D condensate f ~V1Dð0Þ ¼ ½Û0ð0Þ�0;0 ¼ 0g,
½ÛmðkÞ�nr;n0r may be of the order of g1Dn1D. Because of this
peculiar feature, which stems from the momentum depend-
ence of the dipolar interactions, transversal excitations play

in dipolar gases a key role in quantum corrections if
g1Dn1D ≳ ℏω⊥ despite the 1D character of the condensate.
The elementary excitations may be obtained for each m

and k from the Bogoliubov–de Gennes equations

ξν

�
u⃗ν
v⃗ν

�
¼
�
ÊmðkÞþ ÛmðkÞ ÛmðkÞ

−ÛmðkÞ −ÊmðkÞ− ÛmðkÞ

��
u⃗ν
v⃗ν

�
;

ð3Þ

where ½ÊmðkÞ�nr;n0r ¼ EnrmðkÞδnr;n0r , with EnrmðkÞ ¼
ℏk2=2M þ ℏω⊥ð2nr þmÞ. Following a similar procedure
as in Ref. [23], the LHY energy correction ΔELHY may be
obtained from the differential equation [21]

ΔELHY

L
−
1

2
n1D

d
dn1D

�
ΔELHY

L

�

¼ 1

2

X

m

Z
∞

−∞

dk
2π

X

ν

X

nr

½EnrmðkÞ−ξν�ðv⃗νÞ2nr ; ð4Þ

with L the quantization length [24]. Figure 2 shows the
LHY correction of the chemical potential, ΔμLHY ¼
ðd=dn1DÞðΔELHY=LÞ, for different g1Dn1D=2ℏω⊥ ¼ n1Da.
For n1Da ≪ 1, the effect of the transversal modes is, as

expected, negligible, and the LHY correction remains
attractive. However, whereas for contact interacting sys-
tems ΔμLHY ∝ −n1=21D [16], the density dependence in
dipolar condensates is radically different. For n1Da → 0,
ΔμLHY ∝ −n1D, whereas for growing n1Da, ΔμLHY departs
from the linear dependence (top inset of Fig. 2). This is
crucial for the physics of 1D droplets, as discussed below.
For n1Da≳ 0.1, transversal excitations become signifi-

cant. The LHY correction reaches a maximal negative value
at n1Da≃ 0.2 and then increases, becoming repulsive for

(nr,m,k) ( r,m,k) 

(nr,m,k) 

(nr,-m,-k) 

FIG. 1. Dominant collisions between particles in the conden-
sate and in excited states (see text).

FIG. 2. Λ≡ ðΔμLHY=ℏω⊥Þðl⊥=aÞ as a function of n1Da for a
homogeneous 1D dipolar condensate. The top inset depicts
log10ðjΛj=n1DaÞ against log10ðn1DaÞ, showing that ΔμLHY ∝
n1D for n1D → 0. The bottom inset shows ΔELHY=N as a function
of n1Da.
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n1Da > 0.42. For ðn1DaÞ ≫ 1,ΔμLHY ∝ n3=21D , i.e., the LHY
correction becomes that expected for a 3D condensate [15].
This radical change in the nature of the quantum correction
for a condensate well within the 1D regime constitutes a
striking qualitatively novel feature of quasi-1D dipolar
gases.
Phase diagram.—We consider at this point an axially

untrapped, but possibly self-bound, condensate with an
axial width R ≫ l⊥. In that case the use of the local density
approximation, i.e., substituting in Eq. (4) n1D by n1DðzÞ, is
well justified since the momenta contributing most to the
LHY correction fulfill kR ≫ 1. The resulting generalized
Gross-Pitaevskii equation is

μϕðzÞ ¼ −ℏ2

2M
d2ϕ
dz2

þ fμMF½n1DðzÞ� þ ΔμLHY½n1DðzÞ�gϕðzÞ;
ð5Þ

with μ the chemical potential, and μMF½n1DðzÞ� ¼R ðdk=2πÞ ~V1DðkÞ ~n1DðkÞeikz the mean-field interaction,
with ~n1DðkÞ the Fourier transform of n1DðzÞ.
Figure 3 depicts the peak density for N ¼R

∞
−∞ dz n1DðzÞ ¼ 5000 particles as a function of ϵdd and
l⊥=a (which must be≫ 1 to guarantee the 3D nature of the
scattering [25]). Neglecting quantum corrections, the inter-
actions are repulsive for ϵdd < 1 preventing any self-bound
solution (see Fig. 4), whereas for ϵdd > 1 the attractive
interactions lead to the formation of a soliton.
For sufficiently low densities, the effective LHY attrac-

tion results as in Bose-Bose mixtures [16] in the formation
for ϵdd ≤ 1 of self-bound droplets (see Figs. 3 and 4) that
present a flattop profile (inset of Fig. 4). Note that at

ϵdd ¼ 1, the mean-field contribution vanishes. The droplet
acquires, however, a finite peak density, npeak1D a≃ 0.3 (inset
of Fig. 4), at which ΔELHY=N is minimal (bottom inset of
Fig. 2). Note that this minimum, and hence universal, peak
droplet density at ϵdd ¼ 1 also results from the nontrivial
role played by the transversal degrees of freedom.
When ϵdd is lowered, the density decreases and the

system enters in the regime in which ΔμLHY ∝ −n1D. Since
the LHY correction and the mean-field energy have an
equal density dependence, the competition between both
energies crucial for quantum stabilization is absent, and the
system undergoes an abrupt droplet inflation into the
unbound solution. The latter must be compared to the case
of nondipolar Bose-Bose mixtures, which are characterized
by a fixed dependence ΔμLHY ∝ −n1=21D . As a result, the
competition between mean-field energy and LHY correc-
tion remains efficient in binary mixtures even at very low
densities, and hence the peak density smoothly decreases
within the mean-field unbound region without any droplet
inflation.
At ϵdd ¼ 1, the system smoothly crosses over into the

soliton regime. For ϵdd > 1, the soliton density grows
smoothly for increasing ϵdd, and the LHY correction
changes eventually from attractive to repulsive. When this
occurs, the soliton density is significantly lower than that
expected from mean-field theory (up to a factor of 2 in
Fig. 4). Moreover, since for large-enough densities,
ΔμLHY ∝ n3=21D , the effect of the LHY correction remains
relevant even far from the mean-field instability. This must
be compared to the case of Bose-Bose mixtures, where the
ΔμLHY ∝ −n1=21D dependence renders the LHY correction

FIG. 3. Peak density for N ¼ 5000 atoms as a function of l⊥=a
and ϵdd. At ϵdd > 1 (dashed vertical line) the droplet regime
smoothly crosses over into the soliton regime. When n1Da ≪ 1,
the anomalous density dependence of ΔμLHY results in droplet
melting. The solid line marks the point at which the LHY
becomes in average repulsive.

FIG. 4. Peak density, npeak1D , of a 1D self-bound dipolar con-
densate of N ¼ 5000 particles with l⊥=a ¼ 65 as a function of
ϵdd. The dashed and solid curves depict, respectively, the mean-
field results and those taking into account the LHY correction.
For a discussion of the different regions, see text. In the inset we
depict a typical flattop droplet profile for ϵdd ¼ 1 with l⊥=a ¼ 65
(solid) and 30 (dot-dashed).
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basically negligible within the soliton regime. Note that for
sufficiently large ϵdd > 1, eventually μ≳ ℏω⊥, and the
condensate crosses over into the 3D regime, where the
repulsive LHY prevents collapse. This would correspond to
the elongated 3D macro-droplet regime recently explored
experimentally [12]. The description of this crossover,
however, lies beyond the scope of this Letter.
Three-body correlations.—Whereas in mean-field

approximation three-body correlations fulfill gð3Þ ¼
½1=nðr⃗Þ3�hΨ̂†ðr⃗Þ3Ψ̂ðr⃗Þ3i ¼ 1, quantum corrections may
significantly correct its value, gð3Þ ¼ 1þ Δgð3Þ, and hence
in turn the three-body loss rate. For homogeneous
3D nondipolar condensates with density n3D, Δgð3Þ ≃
ð64= ffiffiffi

π
p Þðn3Da3Þ1=2 [18], as confirmed in recent experi-

ments [26]. As for the LHY correction, in 3D homogenous
dipolar condensates, the correction of gð3Þ is very similar:
Δgð3Þ ≃ ð64= ffiffiffi

π
p Þðn3Da3Þ1=2ð1þ Cϵ2ddÞ, with C≃ 0.3 [27].

Dipolar interactions hence introduce corrections that may
be sizable in current experiments with magnetic atoms, but
the density dependence of gð3Þ is identical to that of
nondipolar condensates.
The situation is radically different in 1D. For a 1D

nondipolar condensate Δgð3Þ ¼ −ð6=πÞ ffiffiffi
γ

p
[28], with

γ ¼ 2a=n1Dl2⊥ ≪ 1. Three-body correlations are hence
reduced by quantum effects, and the correction increases
for a decreasing density, since, counterintuitively, 1D
systems are more strongly interacting the more dilute they
are. As for the LHY correction, the momentum dependence
of the dipolar interactions leads to a markedly different
density dependence in dipolar condensates. The correction
of gð3Þ averaged over the transversal degree of freedom [29]
may be evaluated from the LHY correction using the
Hellmann-Feynman theorem [21],

Δgð3Þ ≡
Z

d3r
L

ψðx; yÞ4
R
dx0dy0ψðx0; y0Þ4

�hΨ̂†ðr⃗Þ3Ψ̂ðr⃗Þ3i
nðr⃗Þ3 − 1

�

¼ 6

n21DL
∂ΔELHY

∂g1D ¼ −
6

π

ffiffiffi
γ

p
βðϵdd; n1DaÞ; ð6Þ

where βðϵdd; n1DaÞ is depicted in Fig. 5. For small n1Da,
Δgð3Þ ∝ −nλ1D, with −1=2 < λ < 0. As for nondipolar
condensates, Δgð3Þ remains negative and increases with
decreasing n1D, albeit with a significantly modified power
law. In contrast, when n1Da > 0.42, the growing role of the
transversal modes results in a change in the sign of Δgð3Þ;
i.e., three-body correlations are enhanced rather than
reduced by quantum effects despite the fact that the
condensate remains in the 1D regime. For n1Da ≫ 1,
Δgð3Þ ∝ n1=21D , as expected for 3D condensates. This non-
trivial behavior of three-body correlations in quasi-1D
dipolar condensates may be probed in on-going experi-
ments with magnetic atoms using similar techniques as
those applied in nondipolar quasi-1D condensates [26].

Conclusions.—The momentum dependence of the dipo-
lar interactions leads to strikingly different quantum effects
in quasi-1D dipolar condensates compared to their non-
dipolar counterparts. In contrast to Bose-Bose mixtures,
quantum stabilization is disrupted in dipolar condensates at
low densities due to the modified density dependence of the
LHY correction. As a result quantum droplets only exist in
a window of density values. Moreover, although the
condensate remains one dimensional, the LHY may be
crucially affected by transversal modes, which induce a
change from attractive to repulsive LHY correction at
a critical density. This change of character results in a
significant reduction of the peak density of the soliton, as
well as a modification of its shape. Hence quantum
corrections should be carefully considered in future studies
of dipolar solitons. Furthermore, the peculiar nature of
quantum fluctuations is also reflected in the beyond-mean-
field correction of three-body losses, which also changes its
sign within the 1D regime for growing density. Our results
open intriguing questions about 2D dipolar condensates,
where we expect a similar nontrivial density dependence of
the quantum corrections, as well as about the role of
transverse modes in anharmonic transversal confinements.
This surprising physics of low-dimensional dipolar con-
densates can be readily probed in current experiments with
magnetic atoms.
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FIG. 5. Correction of the three-body correlations,
βðϵdd ¼ 1; n1DaÞ ¼ −Δgð3Þðπ=6 ffiffiffi

γ
p Þ.
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