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Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical
lattices, we analyze the spin 1=2 dipolar Heisenberg model with competing anisotropic, long-range
exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the
dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical,
to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin
liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from
Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel,
stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an
unbiased variational ansatz based on tensor network states and a tensor renormalization group.
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Understanding highly entangled quantum matter remains
a challenging goal of condensed matter physics [1]. One
paradigmatic example is quantum spin liquids in frustrated
spin systems which defy any conventional long range
order characterized by broken symmetry at zero temperature
[1–3]. Instead, the ground state features long-range entan-
glement and nonlocal excitations. Spin liquids are also fertile
ground for studying quantum phases described by gauge
field theories and topological order [4]. While the existence
of spin liquids has been firmly established in a number of
exactly solvable models, e.g., the toric code [5] or the
honeycombKitaev model [6], the nature of the ground states
for many frustrated spin models, e.g., the Heisenberg model
on kagome lattices or the J1-J2 model on square lattices, still
remains controversial despite thegreat theoretical progress in
recent years [7–11]. An unambiguous experimental identi-
fication of quantum spin liquids in solid state materials also
seems elusive [1]. It is, then, important to explore new
physical systems that can cleanly realize well-defined spin
models which have potential spin liquid ground states.
Recent breakthrough experiments on magnetic atoms

[12] and polar molecules [13,14] confined in deep optical
lattices introduced a new class of lattice spin models with
competing exchange interactions that are long-ranged and
anisotropic. The resulting spin Hamiltonians, such as the
dipolar XXZ and dipolar Heisenberg models, are highly
tunable by the external fields that couple to themagnetic and
electric dipoles [15,16]. Here, we show that these models on
square lattices feature strong exchange (not geometric)
frustration and a quantum paramagnetic ground state for
intermediate dipole tilting angles. This claim is consistently

supported by physical arguments, two independent semi-
classical analytical methods, and full numerical calculation
based on a tensor network ansatz [17–21]. Our key insight is
that spin liquids may arise naturally from the system of
tilted, interacting dipoles on square lattices, without the
requirement of peculiar (e.g., triangular or kagome) lattices
or exotic (e.g., Kitaev or ring-exchange) interactions.
The dipolar XXZ and Heisenberg model.—First, we

define the dipolar XXZ model on a square optical lattice

HXXZ ¼ J
2

X
i≠j

fðri − rjÞðSxi Sxj þ Syi S
y
j þ ηSziS

z
jÞ: ð1Þ

Here, i and j label the lattice sites, Si ¼ ðSxi ; Syi ; Szi Þ are the
spin (or pseudospin) operators at site i, and η is the
exchange anisotropy. The key new feature here is that
the coupling between the two spins depends on their
relative position r ¼ ri − rj and the external field (dipole)

direction d̂

fðrÞ ¼ ½1 − 3ðr̂ · d̂Þ2�ða=rÞ3; ð2Þ
with a the lattice constant [Fig. 1(a)]. This geometric factor,
characteristic of the dipole-dipole interaction, dictates
that spin interactions are long-ranged and anisotropic.
For the special case of η ¼ 1, HXXZ reduces to the dipolar
Heisenberg model

Hd ¼
J
2

X
i≠j

fðri − rjÞSi · Sj; ð3Þ

and for η ¼ 0, it reduces to the dipolar XY model, HXY .
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Spin models of the form of HXXZ have been realized
experimentally in two settings. In Ref. [12], the spin
dynamics of a gas of 52Cr atoms in optical lattices was
observed. Each Cr atom carries a magnetic moment of 7μB
and hyperfine spin S ¼ 3. An external magnetic field is
used to align the magnetic dipoles in the direction of d̂.
Such a dipolar gas of Cr in a deep lattice is shown to be
described by HXXZ with J ¼ −μ0ðgμBÞ2=4πa3 < 0 and
η ¼ −2 [12]. Note that J induced by the dipolar interaction
is, contrary to the superexchange, independent of the
tunneling, and it can be set as the unit of energy.
Polar molecules such as 87Rb confined in optical lattices

with negligible tunneling provide another way to realize
HXXZ with S ¼ 1=2 and tunable J and η [13]. Each
molecule carries an electric dipole moment d and under-
goes rotation with angular momentum J [see Fig. 1(a)].
Here, the pseudospin 1=2 refers to two rotational states of
the molecule labeled by jj; mi, where j is the quantum
number of the rotational angular momentum J and m is its
projection onto the quantization axis, chosen as the
direction of the external electric field E. More details
can be found in Ref. [13,16,22]. The dipole-dipole inter-
action projected onto the sub-Hilbert space of the pseu-
dospins then takes the form of a spin Hamiltonian, where
the spin flips correspond to transitions between the rota-
tional states. For example, by choosing jj; mi ¼ j0; 0i and
j1; 0i as the pseudospin down and up, respectively,
Refs. [16,22] showed that the system is described by the
effective Hamiltonian HXXZ with J ¼ D2

t =2πϵ0a3 > 0 and
η ¼ ðD1 −D0Þ2=2D2

t > 0. Here, the dipole matrix element
Dt¼h1;0jd0j0;0i,D1 ¼ h1; 0jd0j1; 0i,D0 ¼ h0; 0jd0j0; 0i,
and d0 together with d� form the vector dipole operator in
the spherical basis [16,22].
The anisotropy η increases monotonically with E. As

shown in Ref. [16], when E≃ 1.7B=jdj with B the energy

splitting of the two pseudospin states, η ¼ 1, and one
arrives at the dipolar Heisenberg model Hd. In the KRb
experiment [13] carried out at zero field and cubic lattice,
η → 0, the dipolar XY model HXY was realized with J on
the order of 100 Hz. Despite the low filling factor and high
entropy, coherent spin dynamics was observed via Ramsey
spectroscopy [13] and modeled theoretically in Ref. [14].
Recently, Yao et al. [16] considered general η and worked
out the phase diagram of HXXZ on the Kagome and
triangular lattice using Density Matrix Renormalization
Group (DMRG). For both lattices, they found evidence for
quantum spin liquid centering around the Heisenberg limit,
η ¼ 1 and θ ¼ 0, in which θ is defined by d̂ · x̂ ¼
sin θ cosϕ with x̂ representing a base vector of the square
lattice. Thus, the physics is connected to a geometrically
frustrated Heisenberg model on both lattices, with addi-
tional longer range interactions and anisotropy η.
In this Letter, we study the phases of Hd on a square

lattice as the dipoles are tilted towards the lattice plane [see
Fig. 1(a)] for S ¼ 1=2 and J > 0. We show that strong
frustration occurs at intermediate dipole tilting angle θ,
leading to a quantum paramagnetic ground state. We
emphasize that, here, the frustration is not imposed by
the lattice geometry, but instead, is due to the competition
between the exchange interactions, analogous to the J1-J2
model. Relatedly, the quantum paramagnetic phase appears
at intermediate θ values (not around θ ¼ 0 as in Ref. [16])
between the Néel and the stripe orders. Thus, it differs
qualitatively from the spin liquids studied in Ref. [16]. We
will also employ different methods to solve the dipolar
quantum spin models.
Competing exchanges for tilted dipoles.—To appreciate

the possible phases of Hd as d̂ is tuned as well as its
connection to frustrated quantum spin models [3,23], let us
consider the leading exchange couplings between the
nearest neighbors, Jx ¼ Jfðax̂Þ and Jy ¼ JfðaŷÞ, and
the next nearest neighbors, Jd ¼ Jfðax̂þ aŷÞ and J0d ¼
Jfðax̂ − aŷÞ [Fig. 1(b)]. Their relative magnitudes and
signs depend sensitively on the dipole tilting angle θ and ϕ.
One example is shown in Fig. 1(b) for fixed ϕ ¼ 25°. At
small θ, Jx ∼ Jy dominates because it is about three times
that of Jd ∼ J0d. The situation is reminiscent of the J1-J2
model in the regime of the Néel order. As θ is increased, Jd
and J0d grow relative to Jx and Jy. The system becomes
more frustrated due to the increased competition of the
exchanges. This is the most interesting parameter region.
Around θ≃ 40°, Jx and Jd vanish while J0d ∼ 0.4Jy. The
model can be viewed as coupled Heisenberg chains. For
even larger θ, Jx and Jd switch signs to become ferromag-
netic, and the stripe order is expected. Clearly, the physics
of Hd is much richer than the J1-J2 model. In fact, the two
models only overlap at one single point, θ ¼ ϕ ¼ 0, where
J2=J1 ¼ 1=2

ffiffiffi
2

p
≈ 0.35 and the system is Néel ordered.

The degree of frustration can be measured by the “spin
gap” Δ, the energy difference between the ground and the

(a) (b)

FIG. 1. (a) Dipolar molecules such as KRb confined in a square
optical lattice. The direction of the dipoles d is tuned by the
electric field E. Two rotational states of the molecules play
the role of pseudospin up and down. The system is described by
the effective XXZ model Eq. (1). With the proper choice of E, it
reduces to the dipolar Heisenberg model Hd in Eq. (3).
(b) Leading exchange interactions Jx, Jy, Jd, and J0d (inset) as
functions of the dipole tilting angle θ for fixed ϕ ¼ 25°. Strong
frustration occurs at intermediate θ.
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first excited state, from exact diagonalization of Hd for a
4 × 4 lattice [24]. For example, we observe a pronounced
peak in Δ around θ ∼ 28° for ϕ ¼ 25°, which indicates
strong frustration and points to a gapped, spin disordered
ground state [25]. For fixed ϕ ¼ 35°, the spin structure
factor shows a clear peak at (π, π) for θ ∼ 15° for the Néel
order, a peak at (0, π) for θ ∼ 50° for the stripe order, but no
well defined peaks around θ ∼ 35°, consistent with the
argument above.
Spin-wave and Schwinger-boson theory.—First, we

obtain a coarse phase diagram of Hd on the (θ, ϕ)
plane using two widely adopted analytical methods in
frustrated quantum magnetism. This will help identify the
interesting regions for the more expensive tensor network
calculations to focus on. The starting point is the classical
solution of Hd by the Luttinger-Tisza method [26]. Hd is
of the form

P
ijJijSi · Sj with hard spin constraint Si ¼ S

and Jij only depends on ri − rj. A theorem states that the
classical ground state is a planar spin spiral, Sr=S ¼
x̂ cosðQ · rÞ þ ŷ sinðQ · rÞ with an ordering wave vector
Q ¼ ðQx;QyÞ [27]. The classical phase diagram [24]
consists of three phases. The first is the Néel order
corresponding to Q ¼ ðπ; πÞ for small θ. The second is
the stripe phase withQ ¼ ð0; πÞ for large θ but not too large
ϕ. These two spin orders are collinear. The third, spiral
phase fills the rest of the phase diagram, for large θ and ϕ,
where Q varies continuously and, in general, is incom-
mensurate with the lattice.
Beyond the classical limit, quantum fluctuations will

suppress the magnetic order and shift the phase boundary.
These effects can be described qualitatively by modified
spin wave theory [28–30]. In the Holstein-Primakoff
representation, we expand Hd in a series of 1=S and keep
up to the quartic order of bosonic operators, i.e., we take
into account the interactions between the linear spin waves.
The bosonic Hamiltonian is solved by self-consistent mean
field theory [24]. The result is summarized in Fig. 2(a). We
find that the phase boundary of the Néel (stripe) phase
moves towards smaller (larger) θ values, opening up an
intermediate region in between where the magnetization
vanishes. The spiral phase also recedes to higher ϕ values.
We label this quantum paramagnetic region with QP. This is
precisely the region where the various exchanges compete
and the system is most frustrated.
Alternatively, we can take into account quantum fluc-

tuations by the rotationally invariant Schwinger boson
mean field theory which is nonperturbative in S [31,32].
It is a well tested method capable of describing both
magnetically ordered and spin liquid states of frustrated
spin models [33–36]. The resulting phase diagram is shown
in Fig. 2(b). Here, each magnetic order corresponds to
condensation of bosons at a certain wave vectorQ. Within a
finite strip region labeled by QP between the Néel and
stripe phase, the condensation fraction vanishes and the
spin excitations are gapped, corresponding to a quantum

paramagnetic phase. The fact that two different approx-
imations agree on the existence of QP indicates that it must
be a robust feature of the model Hd.
Phase diagram from a tensor network ansatz.—A varia-

tional ansatz based on tensor network states [17–19] has
recently emerged as an accurate and unbiased algorithm for
solving two dimensional frustrated quantum spin models
[11,37–39]. In this approach, the ground state many-body
wave function jΨi is constructed from a network of tensors
Ti defined on lattice site i: jΨi ¼ tr

Q
iTi, where tr stands for

contraction of neighboring tensors. Each tensor Ti has four
virtual legs (indices), each with bond dimensionD designed
to build up the quantum entanglement between lattice sites,
and one physical leg representing the spin. We choose a
L × L cluster as the unit cell with periodic boundary
conditions. The algorithm starts with L2 random
tensors, and imaginary time evolution is used to update
the local tensors, jψ 0i ¼ expð−τHÞjψi, until convergence is
achieved. We adopt the simple update scheme [40] based on
singular value decomposition. By using the Trotter-Suzuki
formula expð−τHÞ ≈Q

4
i¼1 expð−τHiÞ þOðτ2Þ, each iter-

ation of projection for one plaquette can be done using
expð−τHiÞ (i ¼ 1, 2, 3, 4) in four separate steps, in which
each step evolves three sites (a right triangle) in one
plaquette with Hi contains only three terms of the
Hamiltonian. For example, H1;2 contains Jx, Jy, and Jd
terms and H3;4 contains Jx, Jy, and J0d terms (See
Refs. [11,24,41,42]).
The expectation value of a local operator Oj at site j,

hOji ¼ hΨjOjjΨi=hΨjΨi, can be computed by tensor

contraction, hOji ¼ trðOj
Q

i≠jT iÞ=tr
Q

iT i where T i ¼
T†
i Ti and Oj ¼ T†

jOjTj. We evaluate it using an iterative,
real space coarse-graining procedure known as the
tensor renormalization group which enables one to
reach the thermodynamic limit [20,21]. In this way,
we calculate order parameters such as magnetization

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSxi2 þ hSyi2 þ hSzi2

q
[24].

With increasing D, quantum fluctuations beyond spin
wave or Schwinger boson analysis are taken into account.

FIG. 2. Phase diagram of Hd from (a) modified spin wave
theory and (b) Schwinger boson mean field analysis. Both
methods reveal a QP phase amidst the three long ranged ordered
phases: Néel, stripe, and spiral.
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The suppression ofM is illustrated in Fig. 3(a) for different
D values at fixed ϕ ¼ 15°. By extrapolating the results to
infinite D, we can determine the phase boundary of the
Néel and stripe phases. Repeating the procedure for differ-
ent ϕ values, we obtain the phase diagram Fig. 3(b). It
firmly establishes the existence of a finite quantum para-
magnetic region (in red), about one degree wide in θ and
persisting from ϕ ¼ 0 up to ϕ ¼ 20°, where the magneti-
zation is completely suppressed to zero. The paramagnetic
phase is narrower than the prediction of the Schwinger
boson mean field theory which tends to overestimate the
spin disordered region. Inside the Néel phase, there is a
sudden drop of M. Note that the spiral phase, in general, is
incompatible with the L × L cluster choice, even for large
L. So we refrain from carrying out the tensor network
ansatz beyond ϕ ¼ 20°. On the other hand, our numerics
indicates that the phase boundary presented in Fig. 3(b) is
not expected to depend sensitively on L as it varies [24].
Finally, we point out that the quantum paramagnetic phase
is a robust feature of the dipolar XXZ model. It persists

when η is tuned away from the Heisenberg limit, e.g., down
to η ¼ 0.5 [24].
It is challenging to pin down the precise nature of the

paramagnetic phase found here in the dipolar Heisenberg
model. Similar difficulties also arise for the J1-J2 model
where the latest DMRG result [10] suggests that the
paramagnetic region may consist of a subregion with a
plaquette valence bond solid (VBS) order and a second,
spin liquid or quantum critical region. Possible spin liquid
states for the J1-J2 model on square lattices have been
classified within the framework of the Schwinger boson
mean field theory [36]. Yet it remains unclear which one is
realized in the ground state. It is possible that the QP region
of Hd may contain some VBS order. Unlike the J1-J2
model, the C4 rotation symmetry is broken inHd as soon as
the dipoles are tilted, which may disfavor the plaquette
VBS. Because of the limitation of the cluster size, we could
not accurately compute the dimer correlation functions.
Future numerical work with larger L and D is required to
shed light on this open issue. The new formulation of
symmetric tensor networks [43,44] and Lanczos iteration
[45] seems promising to detect the possible topological
order and accessing the excitation spectrum.
In summary, we presented consistent evidence that a

quantum paramagnetic phase emerges from the simple
physical system of interacting, tilted dipoles confined on
square optical lattices. Our analysis of the dipolar
Heisenberg model for general ðθ;ϕÞ adds a new dimension
to frustrated quantum magnetism. It allows the exploration
of potential spin liquids beyond the J1-J2 model which has
not been realized cleanly so far. For KRb, J is about
100 Hz, or 5 nK, similar to the superexchange scale t2=U of
the Fermi Hubbard model recently studied using a quantum
gas microscope [46–50]. Thus, it seems possible to probe
the spin order or spin correlations ofHd and related models
in future experiments.
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