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We present a simple trick that allows us to consider the sum of all connected Feynman diagrams at fixed
position of interaction vertices for general fermionic models, such that the thermodynamic limit can be
taken analytically. With our approach one can achieve superior performance compared to conventional
diagrammatic Monte Carlo algorithm, while rendering the algorithmic part dramatically simpler. By
considering the sum of all connected diagrams at once, we allow for massive cancellations between
different diagrams, greatly reducing the sign problem. In the end, the computational effort increases only
exponentially with the order of the expansion, which should be contrasted with the factorial growth of the
standard diagrammatic technique. We illustrate the efficiency of the technique for the two-dimensional
Fermi-Hubbard model.
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Finding an efficient method to solve the quantum many-
body problem is of fundamental physical importance.
A promising strategy to gain insight is represented by
quantum simulators. For example, experimentalists work-
ing with cold atoms in optical lattices are able to realize one
of the most prominent models of strongly correlated
electrons, the Hubbard model. A study of its equation of
state at low temperature has been reported in Ref. [1].
Moreover, short-range antiferromagnetic correlations have
been observed [2–6], and, very recently, even a long-range
antiferromagnetic state was realized [7].
From the theoretical side, making predictions for

strongly correlated fermionic systems is a very challeng-
ing problem. Quantum Monte Carlo methods are affected
by the infamous sign problem when dealing with fer-
mionic models, which in general precludes reaching
low-temperature and large system sizes (see Refs. [8,9]
and references therein). The simulation time to obtain a
given precision scales exponentially with the system
size and the inverse of the temperature. In the strongly
correlated regime, it is then very difficult to extrapolate to
the thermodynamic limit (TL). However, the fermionic
sign gives an unexpected advantage when considering
fermionic perturbation theory. For bosonic theories,
typically, the perturbative expansion has a zero radius
of convergence. This is due to the factorial number of
Feynman diagrams all contributing with the same sign.
For fermions, strong cancellations between different
diagrams at fixed order lead in general to a finite
convergence radius on a lattice at finite temperature.
This happens because for sufficiently small interactions
of whatever sign (or phase) the system is stable on a
lattice at nonzero temperature. This was seen numerically
[10,11], and even proved mathematically for the Hubbard
model at high enough temperature [12]. Perturbation
theory is therefore a powerful tool to study fermionic

theories. By analytic continuation, any point of the phase
diagram which is in the same phase as the perturbative
starting point can be reached in principle, provided that
one has a method to compute the diagrammatic series to
high order. At the moment, there are two numerical
methods to evaluate diagrammatic expansions at high
order, determinant diagrammatic Monte Carlo (DDMC),
and diagrammatic Monte Carlo (DiagMC) simulations.
Major recent achievements of DiagMC simulations are the
study of the normal phase of the unitary Fermi gas [13],
the determination of the ground state phase diagram of the
Hubbard model up to filling factor 0.7 and interactions
U=t ≤ 4 [14], and the settlement of the Bose-metal issue
[15]. Given the power and the versatility of the technique,
systematic diagrammatic extensions of dynamical mean
field theory are now being studied [16,17].
In DiagMC simulations [10,11,18,19] one expresses the

perturbative expansion in terms of connected Feynman
diagrams, which can be written directly in the TL. One then
performs a random walk in the space of topologies and of
integration variables of Feynman diagrams. In DDMC
simulations [20–22] one computes finite-volume perturba-
tive contributions, considering at once the sum of all
Feynman diagrams (connected and disconnected) at fixed
position of interaction vertices. One lets the interaction
vertices perform a random walk in the space-time simu-
lation volume. In principle, in order to compute the sum of
all Feynman diagrams, one should consider all possible
connections between these vertices, of which there are a
factorial number. However, it has been pointed out that
all these fermionic permutations can be grouped in deter-
minants, which can be computed in polynomial time.
In addition, summing all diagrams together already
accounts for massive cancellations. For example, the
Hubbard model at half filling has no sign problem within
DDMC simulations, because the sum of all diagrams at a
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given order is positive definite for every vertex configu-
ration; in contrast the individual diagrams considered by
DiagMC simulations have positive and negative signs. The
major downside of DDMC simulations is that one has to
consider a finite-size system, and this is a serious problem
in the generic case where one has a sign problem. Intensive
quantities, like the density or the energy per site, are
computed in DDMC simulations as the ratio of two
quantites which increase exponentially with the volume.
In this Letter we present a way to compute directly these

intensive quantities, such that the thermodynamic limit can
be taken analytically. It is then clear that the traditional
form of sign problem is not present. As we consider the
sum of all connected Feynman diagrams at once, we
already account for cancellations between different dia-
grams at the same order, greatly reducing the variance in the
sampling. In the end, the total computational cost increases
only exponentially with the order, which is to be compared
with the factorial increase of the standard diagrammatic
technique. We provide numerical proof of the efficiency of
the technique by applying it to the two-dimensional Hubbard
model at low temperature and weak coupling, where the
series is fast converging. We compute the radius of con-
vergence of the series, which is determined by a phase
transition happening for negative values of the interaction.
Let us present an intuitive diagrammatic derivation of

the analytical result of this work. As pointed out in
Refs. [20–22], we can express the sum of all diagrams
with fixed space-time position of interaction vertices in
terms of determinants. This is due to the fact that a
determinant accounts for all the possible connections
between vertices, with the right sign for fermions. In this
way it is clear that one generates all diagrams, connected
and disconnected. We would like to remove disconnected
diagrams, as we know that only connected diagrams will
contribute to intensive quantities [23]. Let us consider a
disconnected diagram. It can be divided in a part which is
connected to the external points of the function we are
looking at, and another part which is not connected to it
(see Fig. 1). This correspondence is one to one. It is then
clear that we can write a recursive formula for the
connected part: we subtract from the set of all diagrams
(connected or not) those which can be divided in a
connected part and a disconnected part. Let cEðVÞ be
the sum of connected diagrams contributing to a correlation
function with a set of external points represented by E,
and with interaction vertices V ¼ fv1;…; vng at fixed
space-time position. Similarly, let aEðVÞ be the sum of
all diagrams, connected and disconnected. In particular,
a∅ðVÞ denotes all diagrams with interaction vertices V
and no external points (they are the diagrams contributing
to the grand-partition function). aE0 ðV 0Þ is easy to compute
for every E0 and V 0 as it can be expressed in terms of
determinants, but we are interested in obtaining cEðVÞ.
If we know cEðSÞ for all S proper subset of V, we can
compute cEðVÞ from

cEðVÞ ¼ aEðVÞ −
X

S⊊V

cEðSÞa∅ðVnSÞ: ð1Þ

If one wants to compute the grand-canonical free energy
(the pressure for an homogeneous system), which has no
external points, one has to render one of the vertices
“special” and consider connectedness with respect to it.
If the vertices are indistinguishable, in order to obtain the
nth order diagrammatic contribution for the correlation
function one has to divide by n! after summation of cEðVÞ
over space-time position of v1;…; vn. The integral of
cEðVÞ over the space-time positions of the v1…; vn is
convergent, in other words, one can consider directly the
TL where the positions of the interaction vertices are
unconstrained. The integration over the space-time position
of the vertices is performed with a standard Markov chain
Monte Carlo algorithm. We sample a linear combination of
the order n and the order n − 1 for normalization purposes,
but alternatively one could use order-changing updates as
in the usual DDMC and DiagMC implementations.
Let us discuss how the computational cost varies with the

order n ¼ jVj. The time to compute aEðSÞ and a∅ðSÞ for all
S ⊂ V scales like n32n (n3 is the cost to compute the
determinant of a n × n matrix, and we have to compute 2n

determinants roughly of this size). It can be shown that the
number of arithmetic operations needed to get cEðVÞ from
the recursive formula (1) is proportional to 3n, which is the
main contribution for n large enough. The observables we
sample are not sign definite, this is reminiscent of the

FIG. 1. A twelve-order disconnected contribution for the four-
point correlation function. The big arrows represent the external
lines, while the points with small arrows represent two-particle
interaction vertices. The ellipses represent connected parts. The
green ellipse represents all the diagrams contributing to the
connected part with four interaction vertices at fixed space-time
position. The black ellipses can be considered collectively
as arising from connectedþ disconnected diagrams with no
external lines.
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fermionic sign problem. The crucial advantage of this
technique over DiagMC simulations is that we eliminate
topologies from configuration space. In the case where all
diagrams have the same sign, this is not a big advantage.
However, in fermionic models this is not at all the case,
there is an almost perfect cancellation between different
diagram topologies occurring with opposite signs. The
cancellations are so strong that the sum over the diagrams at
a certain order divided by the same sum taken with absolute
values goes to zero factorially like the number of diagrams;
this can be seen as a consequence of having a finite radius
of convergence. This means that if one samples topologies
one by one, like in DiagMC simulations, a factorial “sign
problem” is encountered (see Ref. [24] for a more detailed
discussion). We see, therefore, that the trick of summing
over all connected topologies allows us to greatly alleviate
this reminiscence of the sign problem, leaving us with a
sign problem from the integration over the space-time
positions of interaction vertices that increases at most
exponentially with the number of vertices. One might
wonder if paying an exponential cost to remove discon-
nected topologies is really worth it, as we could compute
the sum of all topologies in polynomial time, as it is done in
DDMC simulations. The advantage of considering only
connected diagrams is that we do not suffer from the
traditional form of sign problem, that is, the prohibitive
scaling of computational time with system size. An
analogous situation was found in the context of out-of-
equilibrium impurity models [25], where in order to
consider the long time evolution it was found advantageous
to pay an exponential cost for each Monte Carlo step to
explicitly eliminate disconnected diagrams [26]. For these
reasons, we are able to reach higher orders than DiagMC
simulations, even without resumming classes of diagrams
more complicated than tadpoles (for the Hubbard model
DiagMC simulations arrive at order ∼6 for both the bare
and bold series). Unlike DDMC simulations, the sign
problem does not limit us to work at half filling or with
attractive interactions.
We now discuss the results obtained by implementing this

method for the two-dimensional Hubbard model. Without
loss of generality we can set the hopping parameter t to one.
We consider inverse temperature β ¼ 8, repulsive on-site
interaction parameter U ¼ 2, at density n ¼ 0.875 00ð2Þ
near to half filling.All our error bars correspond to 1 standard
deviation. We resum all bare tadpole diagrams, whose effect
is to shift the chemical potential μðUÞ ¼ μ0 þUn0=2, where
μ0 is the chemical potential needed to get the densityn0 in the
absence of interactions (this corresponds to the first-order
semibold scheme introduced in Ref. [27]). This is useful
because one has a smaller density shift as a function of U.
We compare thermodynamical quantities with DiagMC
benchmarks from Ref. [9]. We find compatible results, with
error bars 1 order of magnitude smaller (see Fig. 2). We
estimate the chemical potential at fixed density n ¼ 0.875

to be μ ¼ 0.55978ð7Þ, while DiagMC simulation gives
μDiag ¼ 0.558ð3Þ. For the energy per site, we have E ¼
−1.25992ð6Þ, while EDiag ¼ −1.2600ð6Þ. As the entropy is
relevant for experiments in optical lattices, we also give the
value of the entropy per site S ¼ 0.1958ð4Þ.We have pushed
the computations up to eleven orders for the pressure (let us
note that for the pressurewe have 1 ordermore for free) as the
error bars continued to stay bounded (see Fig. 3), spending
seven thousand CPU hours. Let us only remark here that the
exponential cost to go to higher orders is compensated by an
exponential convergence as a function of the order for a
convergent series, resulting in an error bar that decays as a
power law as a function of computer time [24]. We have
estimated the radius of convergence of the series in U by
looking at coefficients; see Fig. 4. This is compatible with a
phase transition happening atU ¼ −5.1ð1Þ, when the system
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FIG. 2. Double occupancy as a function of truncation order, for
β ¼ 8, U ¼ 2 and n ¼ 0.875 00ð2Þ. The DiagMC number is
taken from Ref. [9] and it refers to infinite-order extrapolation of
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is electron doped n > 1. This is in qualitative agreementwith
the established phase diagram for the attractive Hubbard
model [28]. The subleading alternating structure shown in
Fig. 4 is compatible with an additional singularity around
U ¼ 6, but further work is needed to rule out other
possibilities. In principle, the series converges exponentially
for jUj < 5.1. In practice, in order to get accurate results for
moderate values of interactions it is necessary to perform
analytical continuation or resummation of the series in order
to accelerate (or extend) the convergence.
We stress that there is no fundamental difference in the

sampling between different physical quantities, as we
expect the external points to play a minor role at high-
enough orders. In the high-order limit, external points can
be thought as “boundary terms,” the bulk being the large
number of internal interaction vertices. This intuition is
supported by the universality of large-order behavior of
perturbation theory, which is independent of the configu-
ration of the external points [29]. Nevertheless, there exist
simple modifications of the procedure that can improve
numerical sampling in a decisive way. The simplest
modification is to consider the unlegged Green’s function,
which can be further divided in a fully dressed tadpole
diagram, and another part. In this way one can obtain
statistics for all values of the Green’s function at once, as
the diagrams depend on the external points only through
these legs in the space-time representation, gaining as well
two more orders. To go further, one has to sample the self-
energy. We want to get rid of one-particle reducible
diagrams. A general one-particle reducible diagram can
be divided in a part which is one-particle irreducible with
respect to one of the external points, and another part
consisting of a diagram for the Green’s function. We can

then derive a recursive formula for the self-energy of the
same form as Eq. (1).
Finally, we note that it is possible to generalize the

method to more general diagrammatic schemes by the use
of a shifted action [27], where one has to consider addi-
tional interaction vertices that act as counterterms.
In conclusion, we have presented an elementary yet

efficient method for the computation of high-order pertur-
bative expansions of general fermionic models directly in
thermodynamic limit. Formally, this method has superior
algorithmic properties than DiagMC simulations. We have
verified the formal arguments by providing numerical proof
for the low-temperature Hubbard model at small interac-
tion, obtaining results that are the state of the art in this
regime. We have computed the radius of convergence of the
series, which shows that the bare series is convergent up to
moderate value of interaction strength. Moreover, we have
shown that achieving such high orders can be used to detect
singularities of thermodynamical functions, which are
known to indicate phase transitions.
A natural continuation of this work would be the study of

the pseudogap regime of the two-dimensional Hubbard
model, where the new algorithm has the potential to extend
to lower temperature the DiagMC results of Ref. [30].
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