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We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force.
The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity
derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown
that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an
infinite number of different “Reynolds numbers” reflecting a multitude of anomalous scaling exponents.
The theoretically predicted transition disappears at Rλ ≤ 3. The developed theory is in quantitative
agreement with the outcome of large-scale numerical simulations.
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Introduction.—If an infinite fluid is stirred by a Gaussian
random force supported in a narrow interval of the wave
numbers k ≈ 2π=L, then a very weak forcing leads to the
generation of a random, close-to-Gaussian, velocity field.
In this flow, the mean velocity ū ¼ 0, and one can introduce
the large-scale Reynolds number Re ¼ urmsL=ν, where

urms ¼
ffiffiffiffiffiffiffiffi
juj2

q
is the root-mean-square velocity, the overbar

denotes a suitable average, and ν is the kinematic viscosity.
Increasing the forcing amplitude or decreasing viscosity
results in a strongly non-Gaussian random flow with
moments of velocity derivatives obeying the so-called
anomalous scaling. This means that the moments

ð∂xuÞ2n=ð∂xuÞ2n ∝ Reρ2n where the exponents ρn are, on
the first glance, unrelated “strange” numbers. In this Letter,
we investigate the transition between these two different
random or chaotic flow regimes. First, we discuss some
general aspects of the traditional problem of hydrodynamic
stability and transition to turbulence.
Fluid flows can be described by the Navier-Stokes

equations subject to boundary and initial conditions (the
density is taken to be ρ ¼ 1 without the loss of generality):

∂tuþ u ·∇u ¼ −∇pþ ν∇2uþ f; ð1Þ

where p is pressure. For an incompressible flow, the
additional solenoidal condition ∇ · u ¼ 0 needs to be
satisfied. The characteristic velocity and length scales u
and L, respectively, used for making the Navier-Stokes
equations dimensionless, are somewhat arbitrary. In the
problem of a flow past cylinder, it is natural to choose
f ¼ 0, u ¼ U, and L ¼ D, where U and D are the free-
stream velocity and cylinder diameter, respectively. In a
pipe or channel flow, u ¼ U ¼ ð1=HÞ RH

0 uðyÞdy ∝
ucenterline is the mean velocity averaged over the cross

section, and L ¼ H is a half-width of the channel. In a fully
turbulent flow in an infinite fluid, one typically takes u ¼
urms and L equal to the integral scale of turbulence. Some
other definitions will be discussed below.
Depending on the setup, a flow can be generated by

pressure or temperature gradients, gravity, rotation, electro-
magnetic fields, etc., represented as forcing functions on
the right side of (1). If viscosity ν ≥ νtr and the corre-
sponding Reynolds number Re ¼ ðuL=νÞ ≤ Retr ¼
ðuL=νtrÞ, the solution to (1) driven by the regular (not
random) forcing f is laminar and regular. As an example,
we may recall the parabolic velocity profile uðyÞ in pipe
and channel flows with a prescribed pressure difference
between the inlet and outlet. In this case, the no-slip
boundary conditions are responsible for the generation
of the rate of strain Sij ¼ ð∂iuj þ ∂juiÞ=2. Another impor-
tant example is the so-called Kolmogorov flow in an
infinite fluid driven by the forcing function
f ¼ Uð0; 0; cos kxÞ. In Benard convection, the relevant
regular patterns are rolls appearing as a result of the
instability of the solution to the conductivity equation.
Thus, the remarkably successful science of the transition to
turbulence deals mainly with various aspects of nonequili-
brium order-disorder or laminar-to-turbulent transition.
In this Letter, we consider a completely different class of

flows. In general, the unforced Navier-Stokes equations,
being a very important and interesting object, do not fully
describe the physical reality which includes Brownian
motion, light scattering, random wall roughness, uncertain
inlet conditions, stirring by “random swimmers” in bio-
fluids, etc. For example, a fluid in thermodynamic equi-
librium satisfies the fluctuation-dissipation theorem stating
that there exists an exact relation between viscosity ν in (1)
and a random noise f which is a Gaussian force defined by
the correlation function [1]:
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fiðk;ωÞfjðk0;ω0Þ
¼ ð2πÞdþ1D0dðkÞPijðkÞδðωþ ω0Þδðkþ k0Þ; ð2Þ

where D0 is the amplitude of the forcing and PijðkÞ ¼
δij − kikj=k2 is the projection operator. The function dðkÞ
defines the distribution of forcing amplitude across the
wave numbers. For example, in an equilibrium fluid,
thermal fluctuations responsible for Brownian motion are
generated by the forcing (2) with D0dðkÞ ¼ ðkBTν=ρÞk2 ≡
D0k2 and kB is the Boltzmann constant. It is clear that, in
general, the function dðkÞ in (2) depends on the physics of
a flow.

The random-force-driven Navier-Stokes equation can be
written in the Fourier space:

ulðk;ωÞ ¼G0flðk;ωÞ

−
i
2
G0Plmn

Z
umðq;ΩÞunðk−q;ω−ΩÞdqdΩ;

ð3Þ

where G0 ¼ ð−iω þ νk2Þ−1, PlmnðkÞ ¼ knPlmðkÞþ
kmPlnðkÞ, and, introducing the zero-order solution
u0 ¼ G0f ∝

ffiffiffiffiffiffi
D0

p
, so that u ¼ G0fþ v, one derives the

equation for the perturbation v:

vlðk̂Þ ¼ −
i
2
G0ðk̂ÞPlmnðkÞ

Z
vmðq̂Þvnðk̂ − q̂Þdq̂

−
i
2
G0ðk̂ÞPlmnðkÞ

Z
½vmðq̂ÞG0ðk̂ − q̂Þfnðk̂ − q̂Þ þG0ðq̂Þfmðq̂Þvnðk̂ − q̂Þ�dq̂

−
i
2
G0ðk̂ÞPlmnðkÞ

Z
G0ðq̂Þfmðq̂ÞG0ðk̂ − q̂Þfnðk̂ − q̂Þdq̂; ð4Þ

where the 4-vector k̂ ¼ ðk;ωÞ. If Eqs. (3) and (4) are driven
by a regular force or boundary and/or initial conditions,
then at low Reynolds number (Re) it typically describes a
regular (laminar) flow field u0 with v ¼ 0. With an increase
of the Reynolds number Re ≥ Reinst, this zero-order sol-
ution can become unstable, meaning that initially intro-
duced small perturbations v grow in time. The further
increase of Re leads first to weak interactions between the
modes describing the “gas” of these perturbations, and,
eventually, when ðRe − Reinst=ReinstÞ ≫ 1, the mode cou-
pling described by Eq. (4) becomes very strong. This
regime we call “fully developed” or strong turbulence.
The problem of hydrodynamic stability is notoriously
difficult, and we know very little about the structure of
the solution for perturbations in the nonuniversal range
Re ≈ Reinst.
Here we are interested in a simplified problem of a flow

generated by a Gaussian random force (2) with a well-
understood zero-order solution u0 ¼ G0f which is not a
result of an instability of a regular laminar flow but is
prescribed by a choice of a random force (2). The
advantages of this formulation are clear from (4) describing
the dynamics of perturbation v driven by an induced
forcing given by Oðf2Þ ∝ D0, the last term in (4). It is
easy to see [1,2] that a dimensionless expansion parameter,
related to a Reynolds number (see below), is
Γ2
0 ¼ ðD0L4=ν3ÞΔ, where Δ ¼ R

dðkÞdk, and, since we
keep L ¼ Oð1Þ, ν ¼ Oð1Þ, and Δ ¼ Oð1Þ, the variable
forcing amplitude D0 can be treated as a dimensionless
expansion parameter. Thus, as D0 → 0, all contributions to
the right side of (4) can be neglected, and, if f stands for the

Gaussian random function, then the lowest-order solution
u0 is a Gaussian field. However, there always exist low-
probability rare events with jvj ≥ ju0j responsible for the
strongly non-Gaussian tails of the probability density
function (PDF). Thus, in this flow Gaussian velocity
fluctuations coexist with the low-probability powerful
events where a substantial fraction of kinetic energy is
dissipated. At even higher Reynolds numbers (see below),
the nonlinearity in (4) dominates the entire field. This
complicated dynamics has been observed in experiments
on a channel flow with rough (“noisy”) walls [3].
This regime is characterized by the generation of velocity

fluctuations vðk; tÞ in the wave number range k > 2π=L,
where the “bare” forcing fðkÞ ¼ 0, which is the hallmark
of turbulence. The above example shows that, at least in
some range of the Reynolds number, low- and high-order
moments may describe very different physical phenomena.
The transition between these two chaotic or random states
of a fluid is a topic of interest to us in this Letter.
In what follows, instead of Re, we will use the more

common Taylor Reynolds number defined as Rλ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffi
5=3Eν

p
u2rms with E being the mean energy dissipation

rate and u2rms ¼ 2K with K the kinetic energy of velocity
fluctuations. At high Reynolds numbers, the two are related
as R2

λ ∝ Re.
Two cases are of special interest. In the low-Reynolds-

number regime (below transition), when Rλ < Rtr
λ , the

integral (L), dissipation (η), and Taylor (λ) length scales
are of the same order. Therefore, ð∂xuÞrms ¼ ½uðxþ ηÞ −
uðxÞ�rms=η ≈ ½uðxþ LÞ − uðxÞ�rms=L and, since we are
interested in instability of a Gaussian flow, the moments
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M<
n ¼ ð∂xuÞ2n

ð∂xuÞ2n
¼ ð2n − 1Þ!!

independent of the Reynolds number. In this case, since the
2nth-order moment can be expressed in powers of the
variance, this means that ð∂xuÞrms is a single parameter
(derivative scale) representing statistical properties of the
flow in this regime. This is not always the case. The rms
velocity derivative in high-Reynolds-number turbulent

flows, ð∂xuÞrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂xuÞ2

q
, is only one of an infinite

number of independent parameters needed to describe
the field and in the vicinity of transition Re ≥ Retr:

M>
n ¼ ð∂xuÞ2n

ð∂xuÞ2n
¼ ð2n − 1Þ!!CnReρn ;

where the proportionality coefficients Cn ¼ Oð1Þ [4,5].
Below, this anomalous state of a fluid we call strong

turbulence, as opposed to the close-to-Gaussian low-
Reynolds-number flow field, considered above. In a transi-
tional, low-Reynolds-number, flow we are interested in
here, the forcing, Taylor, and dissipation scales are of the
same order: L ≈ η ≈ λ. This implies that M>

n can also be
written as ≈ð2n − 1Þ!!Rρn

λ if Oð1Þ constants are omitted.

Furthermore, since λ2 ¼ u2rms=
¯ð∂xuÞ2, we find that, close to

transition, the Reynolds number based on the Taylor length
scale is

Rλ ¼
ffiffiffiffiffiffiffiffi
5

3Eν

r
u2rms ≈

ffiffiffiffiffiffiffiffi
5L4

3Eν

r
ð∂xuÞ2: ð5Þ

The physical meaning of this parameter can be seen readily:
Multiply and divide (5) by ν and by the dissipation scale η2.
This gives

Rλ ∝
L2

η2
× η2

ffiffiffiffiffi
E
ν3

s
≈
L2

η2
;

where η4Ē=ν3 ¼ Oð1Þ. The effective Reynolds number
OðL2=η2Þ, which is the measure of the spread of the
inertial range in k space, is a coupling constant, familiar
from dynamic renormalization group applications to ran-
domly stirred fluids. To describe strong turbulence, one
must introduce an infinite number of “Reynolds” numbers

Rλ;n ¼
ffiffiffiffiffiffiffiffi
5L4

3Eν

r
ð∂xuÞ2n1=n ∝ Rρ2n=n

λ ∝
L2

η2
En1=n

E
; ð6Þ

where close to transition points where η ≈ L we set
Rλ ≡ Rλ;1 ≈ Re. The expressions for the exponents ρ2n
can be written in terms of ξn, the inertial-range scaling
exponents of longitudinal structure functions, as

ρ2n ¼ 2nþ ξ4n
ξ4n − ξ4nþ1 − 1

; ξn ¼
0.383n
1þ n

20

: ð7Þ

This expression, which was derived in the “mean-field
approximation” in [5,6], agrees extremely well with
all available experimental and numerical data (see
Refs. [6–9]). Theoretical predictions of anomalous expo-
nents in a random-force-stirred fluid are compared with the
results of numerical simulations [7] in the top panel in
Fig. 1. The same exponents have been observed in a
channel flow [8] and Benard convection [9], indicating
universality of small-scale features in turbulent flows.

FIG. 1. Top panel: Normalized moments ME
n ¼ En=En as a

function of the large-scale Reynolds number. Dashed lines:
Theoretical predictions and numerical simulations of Refs. [5].
Squares are from Ref. [6] and asterisks from our large DNS
database (see, e.g., Ref. [7]). Bottom panel: Transition region.
Moments of velocity gradients in the low-Rλ transitional range
(present work). From bottom to top, n ¼ 2, 4, 6, 8, and 10.
Horizontal dashed lines: Gaussian values at ð2n − 1Þ!! for
reference. The vertical dashed line is at 8.91 for reference.
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A critical observation for the analysis that follows is that
the n-dependent Reynolds numbers defined in [7] provide a
description of regions of the flows with different magni-
tudes of the local Reynolds numbers: The higher the n, the
stronger the fluctuations represented by it. As explained in
more detail below, Rλ;n ≥ Rtr

λ describes a locally turbu-
lent flow.
Transition between Gaussian and anomalous flows.—In

this Letter, the transition to turbulence is identified with the
first appearance of non-Gaussian anomalous fluctuations of
velocity derivatives. The concept is illustrated in the bottom
panel in Fig. 1, where moments of velocity derivatives from
well-resolved numerical simulations (described below) are
plotted against Reynolds numbers Rλ ≡ Rλ;1 ≥ 2. We can
see that transition points of different moments, expressed in
terms of Rλ ≡ Rλ;1, are different, and below we denote them
Rtr
λ;1ðnÞ. It is important that the transition point for low-

order moments Mn has been found at Rλ ≡ Rλ;1 ≈ 9, first
discovered in Ref. [6] and analytically derived in [2,10].
This result can be explained as follows.
In accord with the widely accepted methodology, con-

sider the Rλ;1 ≡ Rλ dependence of the normalized nth
derivative moment Mn in a flow driven by a relatively
weak force f and large viscosity ν. Then, gradually
decreasing the viscosity, one reaches the critical magnitude
ν ¼ νtr corresponding to Rtr

λ ðnÞ ¼ R−
λ ðnÞ, which is the

upper limit for Gaussianity of the nth moment. Then,
consider the same flow but at a very large Reynolds number
(small viscosity). In this strongly turbulent case, the large-
scale low-order moments, M4, for example, are dominated
by a huge turbulent viscosity νT ∝ E1=3L4=3, the largest
effective viscosity, accounting for velocity fluctuations
at the scales r < L [1]. The effective Reynolds number,
corresponding to the integral scale L, is Rþ

λ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4=½EνTðLÞ�

p
ð∂xuÞ2rms. This way, one reaches the smallest

possible Reynolds number Rλ ≈ 9 of strongly turbulent
(anomalous) flow (see Fig. 1, bottom panel). If, in accord
with experimental and numerical data, we assume that the
transition is smooth and at a transition point the Reynolds
number is a continuous function meaning that R−

λ ¼ Rþ
λ ,

where R�
λ stand for the magnitudes just above and below

transition, we can write

Rtr
λ ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffi
5

3Eνtr

s
u2rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3EνTðLÞ

s
u2rms;

where the effective viscosity of turbulence at the largest
(integral) scale calculated in Refs. [2,10,11] is given by

νT ≡ νðLÞ ≈ 0.084
K2

E
; ð8Þ

where K ¼ u2rms=2 stands for kinetic energy of velocity
fluctuations. Substituting this into the previous relation
gives

Rtr
λ ð2Þ ¼

ffiffiffiffiffiffiffiffi
5

3Eν

r
u2rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20=ð3 × 0.084Þ

p
¼ 8.91 ≈ 9; ð9Þ

very close to the outcome of numerical simulations. The
coefficient Cμ ¼ 0.084, derived in [9–11], is to be com-
pared with Cμ ¼ 0.09 widely used in engineering turbulent
modeling for half a century [12]. It follows from the
relations (5) and (6):

Rtr
λ ðnÞ≡ Rtr

λ;1ðnÞ ¼ ðRtr
λ;nÞn=ρ2n : ð10Þ

Here we point out that, by its definition, Rλ;n probes
increasingly large fluctuations of velocity gradients as n
increases. Thus, one expects a transition to anomalous
scaling for fluctuations of different intensity when the
corresponding Reynolds number Rλ;n is greater than the
transitional Rλ ≈ 8.91. In other words, the n-dependent
transitional Reynolds number Rtr

λ;n ≈ 8.91 is independent of
n. This can also be understood in the context of Landau’s
theory of transition [1], where crossing the transitional
Reynolds number results in instability for perturbations but
not the zeroth-order solution. In addition to theoretical
considerations, the n independence is supported by the
agreement with numerical simulations below.
The Reynolds-number dependence of normalized

moments of velocity derivative is shown in Fig. 1. The
data in the bottom panel in Fig. 1 were generated from a
new set of direct numerical simulations (DNS) at very low
Reynolds numbers. As in Ref. [7], numerical solutions to
Navier-Stokes equations are obtained from Fourier pseu-
dospectral calculations with second-order Runge-Kutta
integration in time. The turbulence is forced numerically
at the large scales, using a combination of independent
Ornstein-Uhlenbeck processes with Gaussian statistics and
finite-time correlation. Only low wave number modes
within a sphere of radius kF ≈ 2 in wave number space
are forced. In order to obtain different Reynolds numbers,
viscosity is changed accordingly while the forcing at large
scales remains constant. In this approach, thus, large scales,
and thus the energy flux, remain statistically similar. The
resolution is at least kmaxη ≈ 3 at the highest Reynolds
number, which was found to produce converged results at
the Reynolds numbers investigated here.
Velocity fields are saved at regular time intervals that are

sufficiently far apart (of the order of an eddy-turnover time)
to ensure statistical independence between them. For each
field, velocity gradient moments are computed and aver-
aged over space. The ensemble average is computed across
these snapshots in time and is used to compute confidence
intervals also shown in Fig. 1.
The intersection points of curves describing Gaussian

moments (horizontal dashed lines) and those corresponding
to the fully turbulent anomalous scaling give the transi-
tional Rtr

λ ðnÞ for each moment. These are compared to the
theoretical prediction (10) with Rtr

λ;n ≈ 8.91 in Fig. 2. This
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result can be understood as follows: In accord with
theoretical predictions, the transitional Reynolds number
Rtr
λ;n ≈ 9 in each statistical realization, independent of n.

This implies that each moment Mn becomes fully anoma-
lous only when the corresponding n-dependent Rλ;n

becomes larger than 8.91. Thus, a transition can occur at
a global Rλ lower that this transitional Reynolds number
(Fig. 1, bottom). In particular, if Rλ;1 < Rtr

λ ≈ 9, the
transition is triggered by the low-probability violent veloc-
ity fluctuations ð∂xuÞn1=n > ð∂xuÞrms coming from the tails
of the probability density.
It is also interesting to evaluate the limiting, smallest,

transitional Reynolds number following (10) in the limit
n → ∞. The relations (5), (6), and (10) give
Rλ ¼ Rtr

λ;1 → 2.92. Evaluated on a popular model ξn ¼
n
9
þ 2½1 − ð2

3
Þn=3� [13], one readily derives Rtr

λ;1 → 3.81.
While the dependence on n differs slightly from the present
results at low n, both models predict that, for Rλ ≲ 3, no
transition to strong turbulence defined by anomalous
scaling of moments of velocity derivatives exists. More
generally, since the function ξn is, under very general
conditions, concave and nondecreasing in n [14], then from
(7) we have ρ2n ∝ n in the n → ∞ limit [15]. Thus, (10)
implies that Rtr

λ;1 would tend to a constant as n → ∞ for a
very large class of physically meaningful functions ξn. The
implication of this result is that, under very general
conditions, there is a minimum Reynolds number under
which no moment displays anomalous scaling.
Summary and conclusion.—In this Letter, the problem of

a transition between two different random states has been
studied both analytically and numerically. It has been
shown that, while the Gaussian state can be described in

terms of the Reynolds number based on the variance of
velocity fluctuations, the description of the intermittent
state of strong turbulence requires an infinite number of
“Reynolds numbers” Rλ;n reflecting the multitude of
anomalous scaling exponents of different-order moments
(n) of velocity derivatives. This novel concept enables one
to account for both typical and violent extreme events
responsible for the emergence of anomalous scaling in the
“subcritical” state when the widely used Reynolds number
Rλ;1 < Rtr

λ is small. It has also been demonstrated that, in
accord with the theory, the critical Rtr

λ;n ≈ 9 is independent
of n. The proposed theory is in good quantitative agreement
with the results of large-scale direct numerical simulations
presented above. The role of turbulent bursts in low-
Reynolds-number flows in various physicochemical proc-
esses and the problem of universality will be discussed in
future communications.

We are grateful to H. Chen, A. Polyakov, D. Ruelle, J.
Schumacher, I. Staroselsky, Y. G. Sinai, K. R. Sreenivasan,
and M. Vergassola for stimulating and informative dis-
cussions. D. D. acknowledges support from the National
Science Foundation.

*donzis@tamu.edu
[1] L. D. Landau and E. M. Lifshits, Fluid Mechanics

(Pergamon, New York, 1982); D. Forster, D. R. Nelson,
and M. J. Stephen, Phys. Rev. A 16, 732 (1977).

[2] V. Yakhot and L. Smith, J. Sci. Comput. 7, 35 (1992).
[3] C. Lissandrello, K. L. Ekinci, and V. Yakhot, J. Fluid Mech.

778, R3 (2015).
[4] T. Gotoh and T. Nakano, J. Stat. Phys. 113, 855 (2003).
[5] V. Yakhot, J. Fluid Mech. 495, 135 (2003).
[6] J. Schumacher, K. R. Sreenivasan, and V. Yakhot, New J.

Phys. 9, 89 (2007).
[7] D. A. Donzis, P. K. Yeung, and K. R. Sreenivasan, Phys.

Fluids 20, 045108 (2008).
[8] P. E. Hamlington, D. Krasnov, T. Boeck, and J. Schumacher,

J. Fluid Mech. 701, 419 (2012).
[9] J. Schumacher, J. D. Scheel, D. Krasnov, D. A. Donzis, V.

Yakhot, and K. R. Sreenivasan, Proc. Natl. Acad. Sci.
U.S.A. 111, 10961 (2014).

[10] V. Yakhot, Phys. Rev. E 90, 043019 (2014).
[11] V. Yakhot, S. A. Orszag, T. Gatski, S. Thangam, and C.

Speciale, Phys. Fluids A 4, 1510 (1992).
[12] B. E. Launder and D. B. Spalding, Mathematical Models of

Turbulence (Academic, New York, 1972); B. E. Launder
and D. B. Spaulding, Comput. Methods Appl. Mech. Eng.
3, 269 (1974).

[13] Z. S. She and E. Leveque, Phys. Rev. Lett. 72, 336
(1994).

[14] U. Frisch, Turbulence (Cambridge University Press,
Cambridge, England, 1995).

[15] D. A. Donzis and S. Jagannathan, Proc. IUTAM 9, 3 (2013).

FIG. 2. Transitional Reynolds number Rλ;1ðnÞ of the nth
moment of velocity derivative. Blue: Numerical simulations of
the present work. Red: Theoretical prediction (10) with
Rtr
λ;n ¼ 8.91.

PRL 119, 044501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
28 JULY 2017

044501-5

https://doi.org/10.1007/BF01060210
https://doi.org/10.1017/jfm.2015.402
https://doi.org/10.1017/jfm.2015.402
https://doi.org/10.1023/A:1027316804161
https://doi.org/10.1017/S0022112003006281
https://doi.org/10.1088/1367-2630/9/4/089
https://doi.org/10.1088/1367-2630/9/4/089
https://doi.org/10.1063/1.2907227
https://doi.org/10.1063/1.2907227
https://doi.org/10.1017/jfm.2012.170
https://doi.org/10.1073/pnas.1410791111
https://doi.org/10.1073/pnas.1410791111
https://doi.org/10.1103/PhysRevE.90.043019
https://doi.org/10.1063/1.858424
https://doi.org/10.1016/0045-7825(74)90029-2
https://doi.org/10.1016/0045-7825(74)90029-2
https://doi.org/10.1103/PhysRevLett.72.336
https://doi.org/10.1103/PhysRevLett.72.336
https://doi.org/10.1016/j.piutam.2013.09.002

