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We calculate the Casimir force and its gradient between a spherical and a planar gold surface. Significant
numerical improvements allow us to extend the range of accessible parameters into the experimental
regime. We compare our numerically exact results with those obtained within the proximity force
approximation (PFA) employed in the analysis of all Casimir force experiments reported in the literature so
far. Special attention is paid to the difference between the Drude model and the dissipationless plasma
model at zero frequency. It is found that the correction to PFA is too small to explain the discrepancy
between the experimental data and the PFA result based on the Drude model. However, it turns out that for
the plasma model, the corrections to PFA lie well outside the experimental bound obtained by probing the
variation of the force gradient with the sphere radius [D. E. Krause et al., Phys. Rev. Lett. 98, 050403
(2007)]. The corresponding corrections based on the Drude model are significantly smaller but still in
violation of the experimental bound for small distances between plane and sphere.
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The last decades have witnessed a surge in precise
measurements of the Casimir interaction [1-4]. Instead
of the theoretical paradigm of two parallel metallic plates
[5], most experiments adopt the plane-sphere geometry to
avoid misalignment. This geometry is in principle ame-
nable to an exact description by the scattering approach
[6-8]. The Casimir interaction energy was calculated in the
plane-sphere geometry at zero temperature for perfect
[9,10] and real metals [11], as well as for finite temper-
atures [12,13] and in the high-temperature limit [14—16]. In
spite of those recent theoretical developments, the analysis
of the plane-sphere experiments to date has relied exclu-
sively on the heuristic proximity force approximation
(PFA), also known as Derjaguin approximation [17].

Experimentally a measurable force signal requires the
radius R of the sphere to be much larger than the separation
L between sphere and plane; cf. Fig. 1(a). For probing
distances in the micrometer range, coated macroscopic
lenses with radii of more than 10 cm leading to aspect ratios
R/L ~ 10° were used [18,19]. In experiments exploring the
Casimir interaction in the submicrometer regime smaller
aspect ratios of R/L~10° were realized [20-25].
However, up to now these aspect ratios were out of reach
for numerically exact computations. Within the scattering
approach, the required number of multipoles scales like
R/L. In practice, the number of multipoles so far was
limited to £ ~ 500 allowing for aspect ratios of R/L ~ 100
[26]. Such calculations are capable of addressing recently
proposed experiments based on optical tweezers as a tool
for probing femtonewton Casimir forces well outside the
validity of PFA [27], but are not suited for describing
typical Casimir force experiments.
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In this Letter, we significantly extend the range of
numerically accessible aspect ratios to values of R/L ~
10° and report on results for the Casimir force and force
gradient. We take the parameters corresponding to the
experiments in Refs. [20-23] with gold surfaces at room
temperature, but our approach also opens the way to
calculate exact results for a variety of recent experiments
with similar aspect ratios and different materials like
magnetic materials [24] and layered surfaces [25]. The
key ingredients allowing us to treat experimentally relevant
aspect ratios are a new symmetrical representation of the
round-trip scattering operator and a state-of-the-art algo-
rithm for evaluating determinants of hierarchical matrices.

Although PFA is expected to provide the correct leading
divergence in the limit R/L — oo, the magnitude of the
correction to PFA under real experimental conditions was
not known until now. In Ref. [20], the force gradient
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FIG. 1. (a) Sphere of radius R separated from the plane by a
distance L. (b) Frequency dependence of the permittivity of gold
used in the numerical calculations. The vertical solid line
indicates the first Matsubara frequency &; while the dotted line
indicates the plasma frequency wp.
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variation with R was probed experimentally, and an upper
bound for the correction was derived. On the theoretical
side, recent advances were based either on asymptotic
expansions valid in the particular case of perfect reflectors
at zero temperature [28] or on the derivative expansion
approach [29-31]. The latter relies on a resummation of the
perturbative expansion around the planar geometry. Its
application to compact objects like the sphere thus relies on
the assumption that only the lower hemisphere contributes
when R/L > 1 [32]. Moreover, the derivative expansion
requires analyticity of the perturbative kernel, a condition
not met for the zero-frequency contribution when taking the
plasma model [33].

None of these approaches allow for a direct comparison
with the experimental bound derived in Ref. [20], since
they provide only the leading-order correction to the PFA
result. In fact, the next-to-leading-order correction might be
comparable to the leading-order one for typical experi-
mental aspect ratios R/L ~ 103, as for instance in the case
of Drude metals at high temperatures [15]. A recent
proposal combines the leading-order correction for the
positive Matsubara frequencies and the exact result for the
zero-frequency contribution in the case of Drude metals
[34]. However, no such result is available for the plasma
model. Here, we present exact numerical results for the
force and the force gradient taking the parameters of [20]
and either the Drude or plasma prescriptions for the
Matsubara zero-frequency contribution. Both prescriptions
violate the experimental bound for the correction to the
force gradient at sphere-plane distances below 400 nm, but
the corrections for the Drude prescription are significantly
smaller.

In the scattering approach the Casimir interaction free
energy is given by [6,7]

kT &
F = -5 Z logdet[1 — M(|&,])] (1)

n=—oo

where M (&) denotes the round-trip operator at imaginary
frequency ¢ and the Matsubara frequencies ¢, =
2ankgT/h are proportional to the temperature 7. For
reasons explained below and in contrast to the common
choice, we adopt a symmetrized form of the round-trip
operator

M(é) — /RSe—/C(L+R)RPe—/C(L+R) /RS~ (2)

The reflection operator at the plane Rp is diagonal in the
plane-wave basis. Its matrix elements are given by the
Fresnel coefficients r,(k, i£), where the polarization p can
either be transverse magnetic (TM) or transverse electric
(TE), and k denotes the projection of the wave vector onto
the plane. The translation operator exp [-/C(L + R)] covers
the distance between the plane and the center of the sphere

along the z direction; cf. Fig. 1(a). K is diagonal in the
plane-wave basis as well, with matrix elements

k* + £2/c?. Finally, the reflection operator R is diago-
nal in the multipole basis with matrix elements given by the
Mie coefficients a,(if), b,(if) [35].

Our particular choice (2) for the round-trip operator M is
a key ingredient to push the numerics into the experimen-
tally accessible parameter range. First, it avoids ill-
conditioned matrices with elements differing by more than
one hundred orders of magnitude that render a fast and
stable evaluation of the free energy (1) difficult [26]. In fact,
numerical tests suggest that with the round-trip operator
of the form (2), 1 — M becomes diagonally dominant.
Second, it turns out that the matrix M can be hierarchically
factored. This means that although the matrix is not sparse,
it can be efficiently approximated by considering only a
subset of all matrix elements. The error caused by this
approximation can be made negligibly small. We efficiently
compute the determinants using the implementation [36] of
an algorithm designed for hierarchical off-diagonal low-
rank matrices [37]. Another key ingredient is a fast
computation of Legendre polynomials P,(z) [38] to
efficiently evaluate associated Legendre functions P7(z)
arising in the change between multipole and plane-wave
basis. These numerical improvements allow us to calculate
the plane-sphere Casimir energy up to aspect ratios R/L ~
4 x 10% requiring multipole orders Z ~ 2 x 10*.

While the details of our numerical approach will be
discussed elsewhere [39], it is worth pointing out checks
supporting the validity of our results. We have found
agreement with the exact analytical result for the Drude
model in the high-temperature limit [15] and the leading
correction to PFA for perfect reflectors at 7 = 0 [28,30].
Finally, for the Drude prescription our results shown below
in Fig. 2(b) are consistent with those obtained from the
derivative expansion [31].

Here, we will focus on gold surfaces [20-23] at room
temperature 7' = 295 K. The permittivity of gold at imagi-
nary frequencies entering the reflection coefficients can be
derived from tabulated optical data [40] as explained in
Ref. [41]. As shown in Fig. 1(b), the frequency range
covered by this procedure includes all required Matsubara
frequencies except for n = 0.

For the treatment of the zero-frequency contribution, two
models have been used in the analysis of experiments, the
Drude model and the plasma model. Since for n = 0 no
polarization mixing occurs [42], TM and TE modes
contribute independently. The TM mode for both models
is perfectly reflected by plane and sphere, and thus its
contribution to the Casimir free energy only depends on
R/L.In contrast, the contribution for the TE mode depends
on the model chosen. While for the Drude model no
contribution arises [43], the contribution for the plasma
model is nonvanishing and also depends on the plasma
frequency wp [14].
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FIG. 2. Beyond-PFA corrections to (a) the force and (b) the
force gradient are shown as function of the distance between
sphere and plane. We multiply the correction by the aspect ratio
R/L. The upper three and lower three lines refer to the Drude (D)
and plasma (P) prescription, respectively. The dashed horizontal
lines indicate the results for perfect reflectors at zero temperature,
corresponding to the constant coefficients fFR | and f'FR | for the
force and force gradient, respectively, as defined in the text. In the
lower panel, the grey area marks the parameter range for the force
gradient excluded experimentally at the 95% confidence
level [20].

It has been argued that even in the plasma model the TE
mode does not contribute to the Casimir free energy [44].
Nevertheless, for a number of experiments agreement of the
results with the plasma prescription just introduced was
found [21-25]. In a few cases experimental support for the
Drude prescription was claimed [19,45], but also ques-
tioned [46]. All in all, there is no agreement yet on how the
zero-frequency contribution should be accounted for.

For gold, we find from the optical data the plasma
frequency wp = 9 eV which differs slightly from the value
wp = 8.9 eV used to analyze the experiment in Ref. [21]. For
the zero-frequency contribution in the Drude case, we use the
analytical result derived with the help of bispherical coor-
dinates [15] instead of performing a numerical evaluation.

We calculate the Casimir force F = —-0F /0L and
compare the results with the proximity force approximation
Fppa = 2xRFpp(L)/A, where Fpp(L)/A is the Casimir
free energy per unit area for parallel plates at a distance L.
Within the derivative expansion approach, the leading
correction to PFA is of the form

s

FPFA

|~

with the coefficient f(L) independent of R [29]. The
subleading corrections might contain logarithmic terms,
as for instance in the case of high temperatures [15]. For the
special case of perfect reflectors and zero temperature, the
coefficient # is independent of L and given by pFR, =
1/6 —10/7% ~ —0.847 [28,30].

In order to test (3) and obtain a numerical approxima-
tion for S(L), we plot in Fig. 2(a) the variation of
(R/L)(F/Fppy — 1) with the distance L for radii
R =10, 40, and 151.3 um. The upper three curves corre-
spond to the Drude prescription (D) while the lower three
curves correspond to the plasma prescription (P). The
dashed line indicates the value of fFR . According to (3),
the correction to the force scaled with R/ L should approach
B(L) and be independent of R for sufficiently small values
of L/R. This is indeed the case when considering the Drude
prescription for L < 400 nm and the sphere radii shown in
Fig. 2. As the distance increases, the curves representing
different radii start to deviate from each other. This
behavior can be associated with the contribution of sub-
leading corrections, which become comparatively more
important as L increases. At a fixed temperature, larger
distances result in an increase of the relative contribution of
the zero Matsubara frequency [15], for which the sublead-
ing correction is comparable to the leading one for the
parameters represented in the figure.

On the other hand, when taking the plasma prescription
for the zero-frequency contribution, the curves correspond-
ing to different values of R, shown in the lower part of
Fig. 2(a), are well separated from each other, indicating that
the correction to PFA is not of the form (3) in this case. The
contributions from the Matsubara frequencies with n # 0
are exactly the same for the two models. Hence the
difference shown in Fig. 2(a) is entirely due to the TE
zero-frequency contribution present in the plasma prescrip-
tion but not in the Drude prescription.

The zero-frequency contribution becomes relatively
more important as L increases, separating the plasma
curves from each other and from the Drude curve. The
derivative expansion approach fails in the plasma model at
finite temperatures precisely because of the nonanalytical
nature of the perturbative kernel corresponding to the TE
zero-frequency contribution [33], thus resulting in the
structure shown in the lower part of Fig. 2(a). We also
remark that in contrast to what is frequently believed, the
case of perfect reflectors at zero temperature, indicated by
the horizontal dashed line in Fig. 2(a), does not provide an
upper bound for the magnitude of the force correction for
L > 100 nm due to the contribution of the TE zero-
frequency mode in the plasma model.

The magnitude of the correction to PFA was experi-
mentally investigated in Ref. [20]. The Casimir force
gradient F' = —0>F/OL* was measured for different
sphere radii, and a linear dependence with 1/R similar
to (3) was proposed
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FIG. 3. Beyond-PFA corrections to the (a),(b) force and (c),(d)

force gradient are shown as function of the inverse sphere radius.
While in (a) and (c) the relative corrections are displayed, the data
in (b) and (d) have been scaled by R/L. The sphere-plane
distances are L = 200 nm (o), 400 nm (), and 600 nm (A).
Solid lines with open symbols refer to the Drude prescription
while dashed lines with filled symbols refer to the plasma
prescription.
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While the authors of [20] were unable to measure the
correction term, they nonetheless derived the upper bound
IF(L)| < 0.4 at the 95% confidence level for L in the
interval between 150 and 300 nm. In Fig. 2(b), we plot the
variation of (R/L)(F'/Fpps — 1) with the distance L for
the same values of R used in Fig. 2(a). This quantity
provides an approximation for the coefficient /(L) as long
as the results are independent of R. The shaded area
represents values for the correction excluded by the experi-
ment [20] while the dashed line indicates the correction for
perfect reflectors at 7 = 0 given by g/*R = (2/3)pR , ~
—0.564 [28,30].

For L $£400 nm the Drude as well as the plasma
prescription violate the experimental bound, although the
maximum violation for the Drude prescription at L ~
150 nm corresponding to S ~—0.46 is significantly
smaller than the violation found for the plasma prescription.
Note, however, that the plasma and Drude curves get closer
to each other as the distance decreases below 200 nm, as
expected in the low temperature regime, with the zero
frequency providing a relatively smaller contribution.

As in the discussion of the correction to the force, the
results for different radii shown in Fig. 2(b) are very close

to each other and to the results obtained within the
derivative expansion approach [31,34] when taking the
Drude prescription. In this case, our results show that
subleading corrections are negligible for the experimental
conditions of Refs. [20-23], which correspond to aspect
ratios in the range R/L ~ 10> — 103. As a consequence, the
corrections can be directly obtained within the derivative
expansion approach [31,34]. However, for the plasma
prescription the derivative expansion clearly underesti-
mates the correction, particularly for the largest radius
shown in Fig. 2(b), and the leading-order correction is not
proportional to 1/R.

In order to better understand the dependence on the
sphere radius, we plot in Figs. 3(a) and 3(c) the force and
force gradient corrections, respectively, as function of 1/R.
For the plasma prescription, the force corrections are
typically close to or above the percent level for the conditions
of the experiment [23] where 1/R = 0.0242 ym~'. More
importantly for this experiment, the corrections to the force
gradient are typically below 1% for submicrometer distances.
In Figs. 3(b) and 3(d) the corrections to the force and force
gradient, respectively, are scaled by R/L. While for the
Drude prescription the data follow rather closely a 1/R
dependence, the results for the plasma prescription indicate a
more singular approach to the PFA limit as 1/R — 0.

In conclusion, we have shown that the Drude prescrip-
tion for the Matsubara zero-frequency contribution leads to
a weaker violation of the upper bound for the PFA
correction derived experimentally by measuring the force
gradient for different radii [20] than the dissipationless
plasma prescription. This could have been expected, since
dissipation is present in the gold coatings used in the
experiments. However, all experiments performed with
coated microspheres with aspect ratios R/L ~ 10*> — 10°
agree with the plasma prescription but not with the Drude
prescription when the force variation with distance is
analyzed for a given radius [21-25]. The proximity force
approximation combined with the Drude prescription
underestimates the experimental data for nonmagnetic
materials, so that the correction calculated here brings
the Drude prediction even further away from the exper-
imental results. When taking the plasma prescription, the
magnitude of the correction is significantly larger than
predicted experimentally but still too small to degrade the
quality of the comparison between the experimental data
and the theory based on the plasma prescription. The
theoretical results presented here, taking the sphere curva-
ture fully into account, indicate that experiments probing
the Casimir interaction beyond the PFA regime could
provide new insight into the role of dissipation in
Casimir physics.
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