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We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence
of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the
pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in
the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively
suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the
fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both
contact time and scattering angle in noncentral collisions are significantly affected. The modification of the
fusion cross section and possibilities for its experimental detection are discussed.
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Introduction.—The dynamics of the pairing field during
the nuclear reactions has rarely been investigated to date,
although it is well known that the static pairing field is
crucial for the description of the atomic nuclei, both in
the ground state as well as in excited states (see, e.g.,
Refs. [1–5] and references therein). The reason is twofold:
first, it is believed that the pairing field dynamics will
produce only small corrections to the commonly accepted
picture of low-energy nuclear reactions; second, the proper
treatment of the pairing field dynamics requires us to use
more advanced approaches resulting in a rapid increase in
computational complexity. On the other hand, it is well
known that the pairing correlations give rise to abundant
fascinating phenomena, like topological excitations,
observed with great details in superfluid helium [6] or
ultracold atomic gases [7,8]. For example, in experiments
with ultracold atomic gases, where two clouds of atomic
Bose-Einstein condensates (BEC) are forced to merge, the
interface between the two BECs may lose its superfluid
character (solitonic excitation). This excitation is unstable,
and decays through quantum vortices [9,10]. In this Letter,
we investigate the possibility of creating similar excitations
in nuclear reactions; see Fig. 1.
The pairing field in nuclear systems is small in a sense

that the ratio of its magnitude to the Fermi energy does not
exceed 5%. It implies that BCS treatment is regarded as a
justified approximation and the size of the Cooper pair is of
the same order as the size of a heavy nucleus. Although
the pairing field is small as compared to, e.g., the unitary
Fermi gas [11], it is important for the proper description of
the nuclear systems: while it smears out shell effects
responsible for static deformations, it also enables large-
amplitude collective motion which otherwise would be
strongly damped. Therefore, the description of nuclear
fission requires us to take into account superfluidity as one
of the crucial ingredients [12–14]. Recently, it has been

pointed out that dynamic excitations of the pairing
field, which is absent in the static treatment, affect
significantly the induced fission process leading to much
longer fission time scales than predicted by other simplified
approaches [15].
The pairing field ΔðrÞ can be regarded as an order

parameter that specifies whether the nucleus is superfluid or
not [16]. The order parameter belongs to the U(1) univer-
sality class and it can be decomposed asΔðrÞ¼ jΔðrÞjeiφðrÞ.
In the ground state the phase is uniform across the nucleus,
and it can be absorbed by the gauge transformation. Then
the only relevant quantity is its absolute value jΔðrÞj, which
is on the order of 1 MeV. The situation is different when
two superfluid nuclei collide. Then the relative phase Δφ
between two pairing fields is well defined (see Fig. 1) and

FIG. 1. Schematic picture of the situation we examine in the
present Letter: a collision of two superfluid nuclei with different
phases of the pairing fields. Each disc represents a cross section
of a nucleus. The arrows inside the nucleus indicate the pairing
field ΔiðrÞ, where the length of the arrow indicates its absolute
value jΔiðrÞj, while the direction indicates its phase φiðrÞ (i ¼ 1,
2). In the ground state, the phase is uniform across each nucleus
φiðrÞ ¼ φi and the phase difference Δφ (≡φ1 − φ2) is well
defined. We will show how the phase difference affects the
reaction dynamics.
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cannot be removed by the gauge transformation. This
difference will trigger various excitation modes of the
pairing field as well as the particle flow between colliding
nuclei. Although the phases of the pairing fields are not
controlled in nuclear experiments, they will affect the
reaction outcomes in an averaged way. The consequences
of this effect turn out to be significant and are discussed in
this Letter.
Collision of two superfluid nuclei.—Let us first focus on

the energy scale of the possible effect which may appear
during a collision of two superfluid nuclei at a fixed pairing
phase difference Δφ. One would naively expect that it is
governed by the pairing energy which is proportional (for
protons or neutrons) to 1

2
gðεFÞjΔj2, where gðεFÞ represents

the density of states per one spin projection at the Fermi
level, and Δ is the pairing gap. Such a quantity for nuclei is
on the order of MeV, and thus one may infer that the
possible effects would be too weak to be observed in
nuclear reactions. However, this is not the case, since
during the collision a junction between two superfluids is
created, where the phase varies rapidly. The energy stored
in the junction depends both on the phase difference and the
size of the junction. One may estimate the energy of the
junction from phenomenological theory of superfluids,
namely, the Ginzburg-Landau (GL) approach:

Ej ¼
S
L
ℏ2

2m
nssin2

Δφ
2

; ð1Þ

where S is the area of the junction, L is the length scale over
which the phase varies, and ns is the superfluid density (for
derivation, see Ref. [17]). Note that neither the pairing
energy, nor the pairing gap enters this formula explicitly. For
a collision of two heavy nuclei at energies close to the
Coulomb barrier, one can show that the energy stored in
the junction can vary by several tens of MeV depending on
the phase difference [17]. Such a drastic energy change may
significantly alter the dynamics of the collision. Clearly in
order to determine those quantities in Eq. (1) (S, L, ns) one
needs to perform microscopic simulations, since they are in
general dependent on the actual reaction dynamics. Note that
the situation described here is markedly different from the
Josephson effect encountered in solids, ultracold atomic
gases, or heavy ion collisions [29–33]. The Josephson effect
involves tunneling between weakly coupled pairing con-
densates. Here we focus on the strong-coupling limit: the
nature of the junction is entirely different even though its
decay will also involve a Josephson-like current. In this
Letter, we show that the associated pairing field dynamics
has a significant impact on the fusion cross section and the
total kinetic energy (TKE) of the fragments.
TDSLDA for nuclear reactions.—Presently, the most

accurate microscopic approaches to the dynamics of super-
fluid systems are based on the density functional theory
[34,35]. Here we utilize an approximated formulation

known as the time-dependent superfluid local density
approximation (TDSLDA), which is formally equivalent
to the time-dependent Hartree-Fock-Bogoliubov theory
(TDHFB). The approach has been proved to bevery accurate
for describing dynamics of strongly correlated fermionic
systems, like ultracold atomic gases [9,10,36–40] and
nuclear systems [15,41–43]. We solve the TDSLDA equa-
tions numerically on a 3D spatial lattice (without any
symmetry restrictions) with periodic boundary conditions.
We use a box of size 80 fm × 25 fm × 25 fm for head-on
collisions and 80 fm × 60 fm × 25 fm for noncentral colli-
sions. The lattice spacing is set to 1.25 fm. For the energy
density functional, we use the FaNDF0 functional [44,45]
without the spin-orbit term.
Although it is well known that the spin-orbit interaction is

crucial for a proper description of nuclear static properties as
well as energy dissipation in low-energy nuclear reactions, it
does not induce qualitative change in the pairing field
dynamics. In this Letter, we investigate the possible impact
of the phase difference on the reaction dynamics and address
the following questions: what observables are affected by the
phase difference, and for each affected quantity what is the
predicted size of the effect? In order to answer these
questions one needs to set correctly the scales of the
problem, which are determined in the present context by
the average magnitude of the pairing gap and the ratio of the
coherence length to the size of the system. None of the
meaningful scales in our problem is affected by the spin-
orbit interaction. However, in order to provide quantitative
results that can be compared directly with experimental data,
one needs to perform calculations with a full nuclear density
functional. We defer these extremely numerically expensive
studies to future works. This simplification allows us to
construct a highly efficient solver of the TDSLDA equations
(for details, see Supplemental Material of Ref. [18]).
Nevertheless, the problem is still numerically demanding
and requires usage of supercomputers. Very recently, the first
attempt was reported in Ref. [33], where the effects of the
phase difference in head-on collisions of 20Oþ 20O were
investigated based on TDHFB, including the spin-orbit
contribution. In case of reactions with light systems, the
impact of the phase difference on various observables was
found to be very small [33,46].
One may raise a question regarding the adequacy of the

description of the finite system using the theoretical
framework admitting the broken particle-number sym-
metry. It gives rise to the Nambu-Goldstone (NG) modes
related to the rotation of the phase of the pairing field
[47,48]. The phase can be traced back to the phase of the
Cooper-pair wave function, which can be defined as the
eigenfunction corresponding to the dominant eigenvalue of
the two-body density matrix, and, thus, is independent of a
particular approximation in the treatment of the pairing
correlations. The particle-number projected (symmetry-
restored) wave function would imply averaging over the
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phase. The natural question is whether this averaging needs
to be performed before the collision. The answer to this
question is related to the time scale of the associated NG
mode, which is governed by the nuclear chemical potentials
[49]. Since phases of both projectile and target nuclei rotate
during the time evolution, what matters is the difference of
the periods of the phase rotations. If it is long enough, as
compared to the collision time, the use of the framework
with broken particle-number symmetry is validated [50]. In
the case of nuclear collision it is determined by the difference
of (one nucleon) separation energies of the projectile and
target nuclei ΔS ¼ jS1 − S2j. Thus, the description will be
valid if one limits to the collision of nuclei whose difference
between the separation energies does not exceed 1 MeV that
leads T ¼ ð2πℏ=ΔSÞ > 1200 fm=c, which is longer than
the collision time. The most clean case corresponds to the
symmetric collision where the phase difference does not
depend on time.
Kinetic energy and Josephson current.—As a first

example, let us consider symmetric collisions of two heavy
nuclei, 240Pu (since the spin-orbit term is neglected the

nucleus does not exhibit a prolate deformation). In such a
case two nuclei do not fuse and reseparate shortly after
collision. In Fig. 2, we show pairing fields and densities of
the colliding nuclei at various times in two extreme cases,
Δφ ¼ 0 andΔφ ¼ π. It is clearly visible that in theΔφ ¼ π
case a narrow solitonic structure is created; i.e., inside the
structure the order parameter vanishes, the density is
suppressed, and the phase changes rapidly from one value
to another when one crosses the structure. It stays there
until the composite system splits. This produces a signifi-
cant impact on the resulting TKE of the fragments. In
Fig. 3(a), we show the TKE as a function of the relative
phase for various collision energies. The TKE clearly
shows the sin2ðΔφ=2Þ pattern (gray solid curves), which
exactly recovers the dependence of the energy of the
junction given by the GL approach, Eq. (1). The dominat-
ing contribution comes from the neutron pairing field. The
contribution from the proton pairing field is less than 30%
of the neutron effect, due to Coulomb repulsion [17]. These
results indicate that the phase difference hinders the energy
transfer from the relative motion to internal degrees of
freedom. We emphasize that the observed change of TKE
cannot be attributed to the Josephson effect. For example,
for extreme cases Δφ ¼ 0 and Δφ ¼ π, there is no
Josephson current (as it scales like sinΔφ) while the
dynamics of the reaction is altered.
The situation becomes qualitatively different when the

energy is further increased. Namely, at energies about 30%
above the barrier, the departure from this simple pattern is

FIG. 2. Snapshots from the collision of 240Puþ 240Pu for two
extreme values of the relative phase differences (Δφ ¼ 0 and π) at
the energy E≃ 1.1VBass, where VBass represents the phenom-
enological fusion barrier [23]. Left panels show the total density
distribution, whereas the right panels show the neutron paring
field of two colliding nuclei. Top half of each panel corresponds
to the phase difference Δφ ¼ π case, while the bottom half
corresponds to the case without phase difference Δφ ¼ 0.
Contact time is about 550–600 fm=c depending on the phase
difference. For movies and plots showing the phase evolution see
Ref. [17].
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FIG. 3. Results of the TDSLDA simulations for 240Puþ 240Pu
head-on collisions at various collision energies. (a) Total kinetic
energy (TKE) of the outgoing fragments is shown. Line shows fit
to the data by a formula αþ βsin2ðΔφ=2Þ with respect to
parameters α and β. (b) The average number of transferred
neutrons from the left nucleus to the right nucleus due to the
Josephson current is shown. The horizontal axis is the relative
pairing phase Δφ. Note that the change of TKE has different
phase dependence, and cannot be explained by the Josephson
effect.

PRL 119, 042501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
28 JULY 2017

042501-3



observed. It corresponds to the energies at which a third light
fragment is generated [17]. The appearance of the third light
fragment in the quasifission process is understood as a
consequence of the density and charge excesses in the neck
region [24]. However, the solitonic excitation effectively
reduces the density in the neck region. Consequently, for the
energy range 1.3VBass < E < 1.5VBass the number of frag-
ments depends on the phase difference and smaller phase
differences favor the creation of the third fragment [17]. For
E > 1.5VBass the ternary quasifission is observed for all
phase differences.
The stability of the solitonic excitation described here

depends on the possibility of phase transfer between the
pairing fields of the colliding nuclei, which manifests itself
as particle transfer. Even though the reaction is symmetric,
it can cause nucleon transfer from one nucleus to the
other. Indeed, after reseparation the fragments are not
symmetric. However, the amount of nucleon transfer does
not exceed 1.5 for neutrons and 0.5 for protons during
the collision [see Fig. 3(b) and Ref. [17] for more details].
This result is consistent with earlier studies [29–33]. Note
that this particle transfer resembles a Josephson current,
even though the solitonic excitation itself has an entirely
different origin.
Energy threshold for fusion.—Results for the heavy

system indicate that the phase difference effectively works
as a potential barrier, and, consequently, it will affect the
fusion cross section. In order to investigate this issue, we
examine collisions of two medium mass nuclei, 90Zr, that
can fuse. Note that when the spin-orbit term is dropped this
is an open-shell nucleus for neutrons and thus neutrons are
superfluid, whereas protons occupy a closed shell. In
Fig. 4, we show the minimum energy required for the
system to merge in head-on collisions and stay in contact
for times longer than 12 000 fm=c (40 zs). The results
clearly demonstrate that the fusion reaction is effectively
hindered by the dynamic excitations of the pairing field.
The energy threshold as a function of the angle does not
have sin2ðΔφ=2Þ dependence, since we consider now

collisions varying both the phase difference and the
collision energy.
The fusion hindrance phenomenon associated with

pairing dynamics may likely be observed by studies of
the fusion cross section for symmetric systems at the
vicinity of the barrier, in a similar way to experimental
detection of the so-called extra-push energy [51,52], which
is the energy introduced by Swiatecki to explain the
experimental fusion cross sections for collisions of medium
and heavy nuclei at energies above the Coulomb barrier
[53–55]. As a good candidate we suggest symmetric
collisions of different Zr isotopes. For these reactions the
extra-push energy is negligible. 90Zr is neutron magic
(N ¼ 50) and the pairing correlations are absent. As the
neutron number increases neutrons become superfluid,
which hinders the fusion reaction. Based on our results
the extra energy for fusion is expected to be about
Eextra ¼ ð1=πÞ R π

0 ½BðΔφÞ − VBass�dðΔφÞ ≈ 10 MeV.
Another possibility is to investigate asymmetric reac-

tions like 90−96Zr þ 124Sn. Despite the fact that the extra-
push model predicts that the extra-push energy becomes
smaller with increasing the neutron excess, the experimen-
tal data suggest the opposite trend [51]. TDHF calculations
also show similar disagreement [56]. The measured trend is
consistent with the results presented here, as the fusion
reaction is hindered as the system departs from the neutron
magic 90Zr. The chemical potentials for colliding nuclei are
fairly similar admitting the description within broken
particle-number symmetry. We have performed exploratory
simulations for asymmetric reactions, and we have found
that, similarly to the symmetric case, the phase difference
can hinder the fusion for energies around the barrier;
however, no clear solitonic structure was observed [17].
Finally, we have also performed simulations of non-

central collisions. If we are in the energy window where the
phase difference can hinder the fusion, we find that it
affects the contact time, and, consequently, the scattering
angle is affected (see Ref. [17] for movies demonstrating
this effect).
Summary.—We have investigated collisions of medium

and heavy nuclei at energies around the Coulomb barrier,
taking into account the pairing field dynamics with TDDFT
for superfluid systems. We have found that during collision
a stable solitonlike structure appears when two superfluid
nuclei collide with phase difference of the pairing fields
close to Δφ ¼ π. The solitonic excitation suppresses the
neck formation and hinders energy dissipation as well as
the fusion reaction, leading to significant changes in
reaction dynamics. It implies that the pairing field dynam-
ics effectively increases the barrier height for fusion
resembling a “thud wall” in the extra-push model, although
at much smaller energies. The Josephson current between
two colliding nuclei turns out to be small, does not exceed
2 particles. The effects on the kinetic energy of the
fragments and fusion cross section may likely be observed
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FIG. 4. Results of the TDSLDA simulations for 90Zr þ 90Zr
head-on collisions. Fusion threshold energy B is shown as a
function of the relative pairing phase Δφ. For this reaction the
barrier height is VBass ≃ 192 MeV. The phase difference prevents
fusion for energies up to 15% above the barrier.
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experimentally. Last but not least, it is to be noted that the
effects studied in this Letter are clearly beyond the
commonly used TDHFþ BCS approach [27,28,57–59]
(see Ref. [17] for a detailed discussion).
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Note added in proof.—Recently, in a related work [60], it
has been shown that the phase difference can influence the
outcome of the collision only in the case of systems
characterized by the weak pairing correlations (like systems
discussed here). In the strong pairing limit, the role of the
initial phase difference is erased.
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