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We introduce a new numerical technique, the bosonic auxiliary-field Monte Carlo method, which allows
us to calculate the thermal properties of large lattice-boson systems within a systematically improvable
semiclassical approach, and which is virtually applicable to any bosonic model. Our method amounts to a
decomposition of the lattice into clusters, and to an ansatz for the density matrix of the system in the form of
a cluster-separable state—with nonentangled, yet classically correlated clusters. This approximation
eliminates any sign problem, and can be systematically improved upon by using clusters of growing size.
Extrapolation in the cluster size allows us to reproduce numerically exact results for the superfluid
transition of hard-core bosons on the square lattice, and to provide a solid quantitative prediction for the
superfluid and chiral transition of hardcore bosons on the frustrated triangular lattice.
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Introduction.—Models of strongly correlated bosons
on a lattice (or lattice-boson field theories) play a central
role in the description of quantum many-body systems,
encompassing the whole of quantum magnetism (due to
exact spin-boson mappings) [1,2] and including super-
conducting networks [3] and ultracold bosons in optical
lattices [4,5] to cite some relevant examples. Large-scale
numerical approaches, particularly those based on quantum
Monte Carlo (QMC) calculations [6,7], have been instru-
mental in the understanding of the equilibrium properties
of quantum magnets and strongly correlated bosons
(see Refs. [8,9] for some recent examples). Nonetheless,
the presence of frustrated couplings in the magnetic
Hamiltonians, or, more generally, of gauge fields in the
lattice-boson Hamiltonians, leads inevitably to a well-
known sign problem for the worldline QMC approach
[10]. Overcoming this limitation is an urgent problem,
when considering the significant progress in the exper-
imental study of bosonic frustration with quantum magnets
[1,2] or ultracold atoms in artificial gauge fields [11,12].
Promising strategies in this direction, applicable to frustrated
S ¼ 1=2 spin models in their thermal disordered phase, are
offered by diagrammatic Monte Carlo calculations [13–15]
and numerical linked-cluster expansion [16,17].
In the face of the significant hurdles to simulate bosonic

frustration, a valuable guiding principle to attack lattice
bosonic field theories is to capture salient traits of their
physics using states that are weakly entangled in real space.
This principle is at the basis of the two most common
approaches to interacting bosons: (i) Gutzwiller mean-field
(MF) theory [5,18,19], used to predict phase diagrams of
strongly correlated bosons, despite the fact that it eliminates
any form of correlation and entanglement between spatial

building blocks (single sites or clusters thereof); (ii) and
c-field (CF) theory [20,21], which accounts at most for
weak quantum effects, describing only regimes which have
a classical analog, but nonetheless incorporate fluctuations
when supplemented with stochastic treatments such as
Monte Carlo calculations. Recently, we have shown [22]
that quantum many-body systems at finite temperature
exhibit a strong spatial separation between quantum coher-
ent fluctuations—whose wavelengths are upper-bounded
by a quantum coherence length ξQðTÞ that is finite as long
as T > 0—and thermal fluctuations, whose wavelengths
can be arbitrarily large upon approaching a critical point. In
particular, degrees of freedom separated by a distance
larger than ξQ are nearly separable: hence, the system
admits a description in terms of states that possess short-
range entanglement only, but which can exhibit classical
correlations of arbitrary range. Clearly, one would need the
complementary strengths of MF theory and CF theory to
acquire a satisfactory description.
This Letter introduces a new, semiclassical numerical

method—the bosonic auxiliary-field Monte Carlo
(bAFMC) method—which is precisely designed to exploit
the separation of scales between quantum and classical
fluctuations at finite temperature. bAFMC breaks a lattice
boson or spin system into clusters that are treated exactly,
and which are further coupled via a fluctuating classical
auxiliary field (AF) mediating classical correlations.
Quantum fluctuations are faithfully described up to the
length scale of a cluster, while a Monte Carlo treatment of
the AF allows us to account for the thermal fluctuations at
all length scales. The cluster decomposition introduces,
therefore, an artificial cutoff in the wavelengths of quantum
fluctuations, that can be removed via an extrapolation of the
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results to infinite cluster size. We validate our approach,
showing that it can reproduce quantitatively the thermo-
dynamics (including critical phenomena and broken
symmetry phases) of strongly interacting lattice-boson
problems, as exemplified by the Berezhinskii-Kosterlitz-
Thouless (BKT) transition of hard-core bosons on a square
lattice, and we further apply it to reconstruct the multiple
phase transitions of hard-core bosons on the frustrated (or
π-flux) triangular lattice.
Model Hamiltonian and path-integral treatment.—For

the sake of concreteness, we shall focus on the case of the
Bose-Hubbard model with arbitrary hopping terms

Ĥ ¼
X

i<j

ĥij þ
X

i

ĝi ð1Þ

where ĥij¼−Jijb̂
†
i b̂jþH:c: and ĝi¼U=2ðb̂þi Þ2b̂2i −μb̂†i b̂i.

Here b̂i, b̂
†
i are bosonic operators, and the indices i and j

run on the sites of a d-dimensional lattice. In the most
general case the matrix Jij is Hermitian, and its complex
matrix elements describe the presence of a gauge field.
While motivated by the field of cold atoms [4,5,12] this
model is also of immediate relevance to (frustrated)
quantum magnetism when taking the limit U → ∞, which
produces a quantum S ¼ 1=2 XY model [23].
Our approach starts by decomposing the lattice into

clusters (see Fig. 1), implying a decomposition of the
hopping matrix as Jij ¼ J ij þ Lij, where J ij is the matrix
of the intercluster couplings, while Lij contains only
the intracluster couplings. The path-integral treatment of
the Bose-Hubbard model [25] allows us to decouple the
various clusters via a Hubbard-Stratonovich (HS) trans-
formation, introducing an imaginary-time-dependent, com-
plex auxiliary fieldΦiðτÞ, which is defined on the sets Cc of
“boundary” sites i of the clusters (labeled by the c index),
satisfying the condition that J ij ≠ 0 for some j. This leads
then to the following form for the partition function (see
Supplemental Material—containing Refs. [26,27]—for an
explicit derivation [28]):

Z ¼
Z

D½ΦiðτÞ� expð−S½ΦiðτÞ�Þ
Y

c

Zc½fΦi∈CcðτÞg�; ð2Þ

where S½ΦiðτÞ� ¼
R
dτ
P

ijΦ�
i ðτÞð ~J −1ÞijΦjðτÞ is the action

involving exclusively the auxiliary fields, while

Zc½Φi∈CcðτÞ� ¼ Tr½Tτe
−
R

dτĤcðfΦiðτÞ;Φ�
i ðτÞgÞ� ð3Þ

is the effective partition function of a single cluster:
here Tτ is the imaginary-time ordering operator, and
ĤcðfΦiðτÞ; Φ�

i ðτÞgÞ ¼ P
i;j∈cĥij −

P
i∈CcðΦiðτÞb̂†i þ

Φ�
i ðτÞb̂iÞ þ P

i∈cðĝi þ Kn̂iÞ is the effective single-
cluster Hamiltonian, including the intracluster hopping,
the coupling to the auxiliary field, and the local diagonal
terms. Moreover, we have introduced the shifted matrix
~J ij ¼ J ij þ Kδij, with K ¼ ð1þ ϵÞjΛminj and Λmin the
minimal (negative) eigenvalue of J . An ϵ > 0 assures
the positive definiteness of ~J , as required by the HS
transformation. The shift K is then compensated by a
complementary shift in the chemical potential appearing in
Ĥc [29].
Quantum mean-field approximation and auxiliary-field

Monte Carlo method.—The expression Eq. (2) for the
partition function (widely used as a basis of the field-
theoretical treatment [25,30]) is exact, but impractical for a
Monte Carlo sampling, since the single-cluster partition
functions Zc are generally complex objects, leading to a
sign problem [31]. To cast the AF formulation of the
partition function into a practical tool for numerics, an
approximation is in order. A most natural one—turning Zc
into a positive real number—is to treat the AF as a classical
complex field, namely, ΦiðτÞ ¼ Ψi independent of τ. Such
an approximation amounts to decoupling clusters in their
imaginary-time fluctuations: as discussed in Refs. [22,24],
this is equivalent to decoupling their quantum fluctuations
via a so-called cluster quantum mean-field (cQMF)
approximation (namely, a MF approximation restricted
to quantum fluctuations only). This corresponds to casting
the density matrix ρ̂ of the system (such that Z ¼ Trρ̂) into
the form

ρ̂ ≈ ρ̂cQMF ¼
Z

D½Ψ�P½Ψ� ⊗c ρ̂cðfΨi∈Cc ;Ψ
�
i∈CcgÞ; ð4Þ

where D½Ψ� ¼ Q
i∈CðdΨidΨ�

i =2πiÞ is the AF metric,
P½Ψ�¼ðdetXÞ−1exp½−βPijΨ�

i XijΨj� and ρ̂c ¼ exp½−βHc

ðfΨi;Ψ�
i gÞ�. We have introduced the symbol X ¼ ~J −1.

Equation (4) is easily recognizable as a separable form for
the density matrix [32], in which entanglement between
clusters is absent; Eq. (4) actually expresses a strong form
of separability, called Hamiltonian separability [22], which
implies absence of entanglement and quantum correlations,
while still describing classical correlations (according to
the definition of Ref. [32]).
The partition function descending from the cQMF

approximation, Z ≈ Trðρ̂cQMFÞ, describes then an effective
classical field theory for the AF, governed by the action

(b) (c)

FIG. 1. Cluster decompositions of the square lattice with
nearest-neighbor hoppings. Orange-shaded areas identify the
clusters, with intracluster bonds Lij marked in orange; the
intercluster bonds J ij are instead marked in blue. The λ
parameter is the surface-to-bulk ratio of the cluster (see text).
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Seff ½Ψ� ¼ β
X

ij

Ψ�
i XijΨj −

X

c

logZc½fΨi∈Ccg�: ð5Þ

This effective classical field theory results from integrating
quantum fluctuations with wavelengths upper bounded by
the linear size of the clusters, lc. In the spirit of real-space
renormalization group transformations, this latter scale can
be seen as a moving cutoff, setting the boundary between
the fully quantum and the effective classical description of
the system. By sending lc to infinity we recover the exact
description of the system: as shown in Ref. [24], a
quantitative extrapolation of the cQMF results towards
the exact description can be achieved as a power law in the
bulk-to-boundary ratio λ ¼ Next=ðNint þ NextÞ, where Nint
is the number of internal bonds to each cluster, whileNext is
the number of bonds connecting the cluster to the outside.
The introduction of a cutoff scale for quantum fluctuations
and entanglement is fundamentally justified at finite
temperature by the finiteness of the quantum coherence
length ξQ [22], beyond which two degrees of freedom can
be considered as essentially (Hamiltonian) separable. The
quality of the cQMF approximation is therefore controlled
by the ratio between the two length scales lc and ξQ [24].
Finally, it can be shown [28] that a saddle-point approxi-
mation to the effective action, Eq. (5), reproduces cluster
MF (cMF) theory (albeit with modified couplings and
chemical potential). Hence, the cQMF approximation is a
clear improvement over cMF theory via the inclusion of
intercluster classical correlations.
The bAFMC approach consists in solving numerically

the effective classical field theory, described by the action
Seff ½Ψ�, via Monte-Carlo sampling (see the Supplemental
Material [28] for a detailed discussion). At zero temper-
ature the saddle-point approximation to the classical
auxiliary field becomes exact, so that in this limit the
bAFMC approach reduces to a modified cMF theory [28].
Yet the finite-temperature behavior is captured by bAFMC
beyond any mean-field description. Indeed the effective
action Seff (supplemented with a judicious cluster decom-
position) possesses all the symmetries of the original
Hamiltonian that are relevant to the expected critical
phenomena [33], and it preserves the short-ranged nature
of the original couplings [28]. Therefore, unlike in any
mean-field approach, a Monte Carlo sampling of the
fluctuations governed by Seff ½Ψ� shall reproduce the correct
nature of phase transitions or extended critical phases that
one may expect in the original system.
Hard-core bosons on the square lattice.—As a first

validation stage, we test the bAFMC approach in the case
of hard-core bosons on the square lattice at half filling,
corresponding to the quantum S ¼ 1=2 XY model on the
same lattice. The Hamiltonian is obtained as a limiting case
of Eq. (1) with U → ∞, μ ¼ 0, and Jij ¼ J for i, j nearest
neighbors on the square lattice, and zero otherwise.
We introduce the reduced temperature t ¼ kBT=J. This

Hamiltonian features a BKT transition at tBKT ≈ 0.6854
(estimated via QMC) [34], and an extended critical phase
for t < tBKT, which are both inaccessible to mean-field
treatments. Moreover, the hardcore limit, while numerically
favorable due to the restricted dimensions of the local
Hilbert space, is the farthest possible from the classical
limit of bosonic theories, and therefore possibly the hardest
to describe quantitatively within a semiclassical setting.
Figure 2(a) shows the temperature dependence of the

k ¼ 0 peak in the momentum distribution, nðk ¼ 0Þ ¼P
ijhb̂†i b̂ji=L2 for a lattice of size L ¼ 12, as obtained via

different methods: (i) Numerically exact QMC [35]; (ii) the
cMF approach based on a 3 × 3 cluster [19]; (iii) the semi-
classical approach of Ref. [36] [here dubbed the Gutzwiller
Monte Carlo method (GMC)], which amounts to a
Monte Carlo sampling of different Gutzwiller mean-field
wave functions jΨi ¼⊗i jψ ii weighted by the Boltzmann
weight e−βhΨjĤjΨi; and (iv) the bAFMC approach based on
clusters of growing size from 1 × 1 up to 2 × 2. The latter
two approaches have the common aspect of reducing to
cMF theory at zero temperature (albeit a modified one in
the case of bAFMC [28]). The cMF predicts an unphysical
true condensation transition for a 2d system, whose
temperature grossly overestimates the BKT temperature,
and even an extrapolation in the size of the cluster turns out
to be problematic (see below); on the opposite front, the
GMC approach, while capturing correctly the BKT physics
[36], significantly underestimates the transition, without
offering any viable (e.g., cluster-based) strategy for further
improvement. The bAFMC results, on the other hand, are
the closest ones to the QMC method of the three approxi-
mation schemes considered here: even though the consid-
ered cluster decompositions give results which remain
relatively far from the exact ones, a clear trend towards

FIG. 2. (a) Comparison of exact QMC, bAFMC (for various
cluster sizes, plus extrapolation), GMC, and cMF results for
nðk ¼ 0Þ of hardcore bosons on a 12 × 12 lattice. (b) Cluster
scaling of the BKT transition temperature from bAFMC, com-
pared to the critical temperature from cMF; solid lines are linear
fits, whose extrapolated λ → 0 value is to be compared with the
QMC value t ¼ 0.6854 [34] (solid horizontal line).
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the exact values is observed upon increasing the cluster
size; an explicit QMC calculation shows that ξQ < 1 for
t≳ 0.25 [28], so that our largest clusters exceed this length.
In particular, a systematic linear extrapolation in the λ
coefficient can be made which reproduces quite closely the
exact results—the linear form is justified by the boundary
chemical potential shift, producing a linear effect in λ on the
thermodynamics of single clusters. The residual discrep-
ancy is a limitation of the very basic linear extrapolation
scheme (imposed by the limited number of cluster sizes we
considered), and it can still be systematically improved
upon. Most importantly, irrespective of the cluster size all
effective classical theories produced by the bAFMC
approach possess a genuine BKT transition, whose critical
temperature can be estimated from the expected critical
scaling nðk ¼ 0Þ ∼ L7=4 (here, for system sizes L ¼ 12, 24,
and 36 [28]). The BKT temperatures so extracted are then
plotted as a function of the λ parameter in Fig. 2(b): a
simple linear extrapolation towards λ ¼ 0 produces the
estimate tBKTðλ ¼ 0Þ ¼ 0.69ð2Þ, in very good agreement
with the QMC estimate. A similar extrapolation of the
critical temperature for the cMF condensation transition
does not converge towards the QMC estimate, suggesting
that, even within a cluster approach, the MF transition
cannot be reliably used as an estimate of the quasicon-
densation transition of 2d hard-core bosons.
Hardcore bosons on the triangular lattice.—Having

validated the bAFMC for hard-core bosons on the square
lattice, we move on to apply it to an open problem of
strongly correlated bosons in the presence of a frustrating
gauge field, namely, the case of hard-core bosons on a
triangular lattice (TL) at half filling with a π-flux [or Eq. (1)
Jij ¼ −J for nearest-neighbor sites, and other parameters
as for the square lattice], corresponding to the antiferro-
magnetic S ¼ 1=2 XY model on the same lattice. The
ground state of the model displays three-sublattice long-
range order, which entails the ordering of both the spin
variables (bosonic phases) as well as of the spin chirality
(bosonic plaquette current) κ△ ¼ ⨊ðib̂†i b̂j þ H:c:Þ, where
the sum runs over oriented ij pairs on the elementary
triangular plaquette. In the classical spin (S → ∞) limit a
broad consensus exists [37] about the existence of two
thermal phase transitions: a lower-temperature BKT tran-
sition at TBKT with quasicondensation at finite momentum
on the corners of the Brillouin zone [�Q ¼ �ð4π=3; 0Þ and
equivalent wave vectors], and a higher temperature chiral
transition at Tc associated with the appearance of a vortex
lattice: the latter is characterized by a divergence of the
chirality structure factor Sκ ¼ L−2P

△;△0 hκ△κ△0 i. Chiral
ordering on the triangular lattice has been recently observed
by cold-gas experiments in the bosonic classical limit (large
occupancy with weak interactions) [38,39].
Our bAFMC investigation of the frustrated TL focused

on three different cluster shapes: single site, triangular, and
rhombic [see Fig. 3(a)]. The temperature dependence of the

momentum distribution peak nðQÞ [shown in Fig. 3(a)]
as well as that of the chirality structure factor Sκ (see
Ref. [28]) are observed to depend rather weakly on the
cluster shape around the BKTand chiral transitions: this is a
clear signature that the range of quantum correlations in the
thermal critical regime is strongly suppressed by frustration
with respect to the case of the unfrustrated square lattice.
Correspondingly, the estimates of the critical temperatures
TBKT and Tc extracted from finite-size scaling show a
rather weak dependence on the λ parameter [see Fig. 3(b)],
which gives further confidence in their extrapolation to
λ→ 0. The separation between TBKT and Tc increases when
λ decreases, and their extrapolated values [TBKTðλ ¼ 0Þ ¼
0.272ð7Þ, Tcðλ ¼ 0Þ ¼ 0.290ð4Þ] exhibit a sizable relative
separation of 6%, to be compared with the separation of 2%
in the classical spin limit [37]. This shows that quantum
effects can strongly increase the delicate spin-chirality
decoupling observed in classical frustrated magnets, mak-
ing it potentially observable with state-of-the-art experi-
ments on cold-atom quantum simulators [40].
Conclusions.—We have introduced a new numerical

approach (the bosonic auxiliary-field Monte Carlo method)
based on a semiclassical approximation to the partition
function, which eliminates any sign problem at the expense
of the truncation of long-range quantum correlations
beyond a given cutoff, set by a cluster decomposition of
the lattice. This approximation is well controlled due the
generically short-ranged nature of quantum correlations at
finite temperature, and, most importantly, it can be sys-
tematically improved by moving the cutoff to larger length
scales. Our approach positions itself among the methods
which are limited by entanglement and quantum correla-
tions—such as tensor-network Ansätze, including the
density-matrix renormalization group [42]: while the suc-
cess of the latter is mostly based on the weakness of
entanglement in the ground state of physical Hamiltonians
of interest, the success of our method exploits for the first

FIG. 3. (a) Momentum distribution peak nðQÞ of hard-core
bosons on the 12 × 12 frustrated triangular lattice from bAFMC
on different cluster sizes (pictured in the inset). (b) Cluster scaling
of the BKT and chiral transition temperatures; solid lines are
linear fits.
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time the weak entanglement and quantum correlations
present in thermal states. Access to larger clusters than
the ones used here could be easily granted by the use of
Lanczos reconstruction of the low-lying spectrum [43]
(when treating sufficiently low temperatures) or by the
recently proposed reconstruction of an effective auxiliary-
field Hamiltonian from a limited sample of configurations
[44]. The wide applicability of our approach to bosonic
systems makes it a very suitable candidate to investigate
prominent models of frustration, which are of central
interest to quantum magnetism and quantum simulation
with ultracold atoms.
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