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Finding the optimal encoding strategies can be challenging for communication using quantum channels,
as classical and quantum capacities may be superadditive. Entanglement assistance can often simplify this
task, as the entanglement-assisted classical capacity for any channel is additive, making entanglement
across channel uses unnecessary. If the entanglement assistance is limited, the picture is much more
unclear. Suppose the classical capacity is superadditive, then the classical capacity with limited
entanglement assistance could retain superadditivity by continuity arguments. If the classical capacity
is additive, it is unknown if superadditivity can still be developed with limited entanglement assistance. We
show this is possible, by providing an example. We construct a channel for which the classical capacity is
additive, but that with limited entanglement assistance can be superadditive. This shows entanglement
plays a weird role in communication, and we still understand very little about it.
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In Shannon’s classical information theory [1], a classical
(memoryless) channel is a probabilistic map from input
states to output states. This has been extended to the
quantum world. A (memoryless) quantum channel is a
time-invariant completely positive trace preserving (CPTP)
linear map from input quantum states to output quantum
states [2]. A classical channel can only transmit classical
information, and the maximum communication rate is fully
characterized by its capacity. A quantum channel can be
used to transmit not only classical information but also
quantum information. Hence, there are different types of
capacity, such as classical capacity C for classical commu-
nication [3,4] and quantum capacity Q for quantum
communication [5–7].
Since quantum channels transmit quantum states, and

quantum states can be entangled with other parties, it is
natural to ask if entanglement can assist the communica-
tion. This was first considered by Bennett et al., who
showed that unlimited preshared entanglement could
improve the classical capacity of a noisy channel [8,9].
Shor examined the case where only finite preshared
entanglement is available and obtained a trade-off curve
that illustrates how the optimal rate of classical commu-
nication depends on the amount of entanglement assistance
(CE trade-off) [10]. One can also consider how entangle-
ment (E), classical communication (C), or quantum
communication (Q) can trade-off against each other as
resources. The trade-off capacity of almost any two
resources was studied by Devetak et al. [11,12], such as
entanglement-assisted quantum capacity (QE trade-off).
Subsequently, the triple resource (CQE) trade-off capacity
was also characterized [13–15].

However, almost all the capacity formulas above are
given by regularized expressions. They are difficult to
evaluate because they require an optimization over an
infinite number of channel uses, which is typically intrac-
table. The existence of this regularization is because
entanglement across different channel uses can sometimes
protect information against noise and improve the commu-
nication rate, a phenomenon often called superadditivity.
Superadditivity has long been known to be the case for
quantum capacity [16,17], but remained undiscovered for
classical capacity until Hastings gave an example [18]. One
exception is the entanglement-assisted classical capacity CE
[9,19]. An intuitive understanding of the additivity of CE is
that the best way to use entanglement is to preshare it to
the receiver, but not across different channels. The need for
regularization for various capacity formulas represents our
incomplete understanding of quantum channels, as one
cannot find the optimal transmission rate and best encoding
strategies. Thus, an important goal in quantum Shannon
theory is to characterize quantum channels with additive
capacities. For classical capacity, many such channels are
known, including unital qubit channels [21], entanglement-
breaking channels [22], etc. For quantum capacity, there are
also examples like degradable channels [11]. Additivity for
the double or triple resource trade-off capacity has also
been considered, but many fewer examples are known [23].
One can also ask if it is possible to characterize the

additivity of a capacity region (e.g., CE trade-off) from
some of its subregions (e.g., C). This has been shown to be
possible for QE trade-off, as additivity of Q implies the
additivity of quantum capacity with any amount of entan-
glement assistance [12]. However, the same problem is
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open for CE trade-off. This question has only been recently
explored [24], where one can restrict the encoding and
constraint on entanglement to make it additive.
In this work, we consider the implication of additivity

of the classical capacity on the CE trade-off region.
Suppose C is additive, this means we can look at each
channel separately, and entangled input states do not help
[Fig. 1(a)]. The same is true if there is unlimited entangle-
ment assistance [Fig. 1(c)]. But with limited entanglement
assistance, it is unclear whether entangled input states
could help [Fig. 1(b)]. We answer the above question
affirmatively. We show that there exists a channel N such
that the classical capacity is additive, but with some
entanglement assistance P, it becomes superadditive. We
give a schematic plot of our CE trade-off curve in Fig. 2(a).
To describe our results precisely, we need to first review

a few key notions and results in classical capacity. To
transmit classical information, Alice picks a set of signal
states ρi with probability pi (denoted as fpi; ρig), and
sends them through the channel Φ to Bob. The 1-shot
classical capacity (i.e., Holevo capacity) [3,4] of Φ is

Cð1ÞðΦÞ ¼ max
fpi;ρig

S

�X
i

piΦðρiÞ
�
−
X
i

piS(ΦðρiÞ); ð1Þ

where SðρÞ ¼ −tr½ρ logðρÞ� is the von Neumann entropy.
This is the maximal rate of reliable classical information
transmission achieved using tensor products of states ρi,
hence the “1-shot” classical capacity [25]. If we can use
input states which are entangled across n channel uses, we
obtain the n-shot classical capacity CðnÞðΦÞ¼Cð1ÞðΦ⊗nÞ=n.
CðΦÞ ¼ limn→∞CðnÞðΦÞ denotes the (regularized) classical
capacity and is the ultimate limit of reliable classical
information transmission through Φ. If CðΦÞ is additive

for channelΦ, i.e., CðnÞðΦÞ ¼ Cð1ÞðΦÞ for all n, then we use
CðΦÞ in place of CðnÞðΦÞ.
Now consider the scenario where the purifications of the

states ρi are preshared to Bob, who can use them together
with the states he receives through Φ for decoding. If we
restrict the average amount of preshared entanglement to be
P ebits per channel use, we arrive at the 1-shot classical
capacity with entanglement assistance P [10], denoted as

Cð1ÞP ðΦÞ,

Cð1ÞP ðΦÞ ¼ max
fpi;ρigP
i
piSðρiÞ≤P

X
i

piSðρiÞ;þS(Φ
�X

i

piρi

�
)

−
X
i

piS(Φ ⊗ IðϕiÞ);

where ϕi ≔ jϕiihϕij is the density matrix of ρi together
with a purification. This is also achieved using inputs which
are tensor products of states ρi. Similar to classical capacity,

there is CðnÞP ðΦÞ ¼ Cð1ÞnPðΦ⊗nÞ=n and CPðΦÞ. Note that the
above formula works for any P. In particular, when P ¼ 0,
we get Cð1ÞðΦÞ. When P is maximal, we get CEðΦÞ.
Now we are ready to state our main result.
Theorem 1 (Main Theorem) There exists a channel N

such that

CðN Þ ¼ Cð1ÞðN Þ;

i.e., its classical capacity is additive. However, there exists
P such that

CPðN Þ > Cð1ÞP ðN Þ;

i.e., its classical capacity with limited entanglement assis-
tance can be superadditive.
This additivity to superadditivity transition in classical

capacity is illustrated in Fig. 2(a). This is in sharp contrast
to the QE trade-off curve [Fig. 2(b)], asQðnÞ

P grows linearly

(a) (b) (c)

FIG. 1. Consider a channel N for classical communication,
with additive classical capacity. We have the following three
scenarios. (a) Entanglement across channel uses does not help if
we do not have any assistance. (c) Entanglement across channel
uses also does not help if we have unlimited entanglement
assistance (this is always true regardless of the channel). The
question addressed is case (b), whether entanglement across
channel uses can help if we have some entanglement assistance.

(a) (b)

FIG. 2. (a) Schematic plot of the superadditivity in CE trade-

off for our channel. CP ¼ Cð1ÞP at P ¼ 0 and Pmax, but not for all
values in between. (b) QE trade-off curve for channels with
additive quantum capacity. Pmax is the maximum amount of
available entanglement assistance.
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in P with gradient 1. Additivity of Qp follows from the
additivity of Q.
Our channelN is a conditional quantum channelNMA→B

[26], where registerM determines whetherN A→B
0 orN A→B

1

is used (see Fig. 3 for a diagrammatic representation).
Explicitly, on any input state ρMA [27],

N ðρMAÞ ¼ N 0ðh0jρMAj0iMÞ þN 1ðh1jρMAj1iMÞ: ð2Þ

This construction is similar to the one in Ref. [28].
However, their construction does not directly apply to our
case since M is kept and contains classical information.
The intuition why a channel like N will work is that

without entanglement, we are only using the classical
channel N 0; hence, its classical capacity is additive. As
one increases entanglement assistance, one starts using the
quantum channel N 1, where superadditivity kicks in.
Our construction is generic and does not depend on the

specific forms ofN 0 andN 1. Hence, we give the properties
of N 0 and N 1 that are required for our argument to work
and will give a construction ofN 1 later. An example ofN 0

is given in the Supplemental Material [29].
We require the classical channel N 0 to have the follow-

ing properties: (0.1) CðN 0Þ¼logðjBjÞ−minS(N 0ðρÞ).
(0.2) It has a noise parameter η which can be tuned, such
that CðN 0Þ varies from 0 to logðjBjÞ continuously.
We require the quantum channel N 1 to have the

following properties: (1.1) It has a superadditive classical
capacity, i.e., CðN 1Þ > Cð1ÞðN 1Þ. (1.2) For any n and P,

CðnÞP ðN 1Þ ¼ logðjBjÞ− min
SðρÞ≤nP

1

n
½S(N⊗n

1 ⊗ IðϕρÞ)− SðρÞ�:

(1.3) There exists P > 0 such that CPðN 1Þ > Cð1ÞP ðN 1Þ,
and CPðN 1Þ is strictly concave at P.
Here by saying a function f is strictly concave at y, we

mean fðyÞ > ð1 − pÞfðvÞ þ pfðwÞ for all v < y < w sat-
isfying ð1 − pÞvþ pw ¼ y, with p ∈ ð0; 1Þ. It is clear that
CPðΦÞ is always concave in P. If P ¼ ð1 − pÞP1 þ pP2,
then CPðΦÞ ≥ pCP1

ðΦÞ þ ð1 − pÞCP2
ðΦÞ, as one can

always just use entanglement P1 for the p fraction of
the channel uses and entanglement P2 for the other fraction.
The rest of the paper is organized as follows. We first

state Lemma 2 about the classical capacity with limited
entanglement assistance, of partial cq channels (defined in

Lemma 2). This lemma together with the properties above
lead to the simplification of capacity formulas, as we show
in Lemmas 3 and 4. We will prove our main theorem in the
main text and leave the proofs of various lemmas to the
Supplemental Material [29].
Lemma 2 Suppose a channel Ψ has an input Hilbert

space HR ⊗ HC. If there exists a noiseless classical
channel Π on HR with orthonormal basis fjjig, such that

Ψ ¼ Ψ∘ðΠ ⊗ ICÞ;
then Cð1ÞP ðΨÞ can be achieved with an input ensemble
fpij; jjihjj ⊗ ρijg, where ρij are states of C.
By saying Π is a noiseless classical channel with

orthonormal basis fjjig, we mean ΠðρÞ¼P
jjjihjjρjjihjj.

This is very intuitive. Entanglement between R and other
parties is not useful, as Π destroys it. Since we only have
limited entanglement, it is better to use it on C.
Using Lemma 2 and properties of N 0 and N 1, we can

simplify the various capacity formulas of N .
Lemma 3

Cð1ÞðN Þ ¼ max fCðN 0Þ; Cð1ÞðN 1Þg;
CðN Þ ¼ max fCðN 0Þ; CðN 1Þg:

Lemma 2 ensures that for different uses of the channel,
we can choose to use N 0 or N 1 only, without sacrificing
the capacity. Lemma 3 simply states that, for all channel
uses, we should use either N 0 or N 1.
Lemma 4

Cð1ÞP ðN Þ ¼ max
fq;P0g

ð1−qÞP0¼P

qCðN 0Þ þ ð1 − qÞCð1ÞP0 ðN 1Þ; ð3Þ

CPðN Þ ¼ max
fq;P0g

ð1−qÞP0¼P

qCðN 0Þ þ ð1 − qÞCP0 ðN 1Þ: ð4Þ

This lemma states that, for entanglement-assisted
classical communication, the best strategy is to use N 0

for some fraction of the channel uses and N 1 for the other
fractions of the channel uses (i.e., time sharing). Since
usingN 0 does not require entanglement assistance, we can
allocate more of it to N 1.
Now we are ready to prove the main theorem.
Proof of main theorem— Choose N 0 such that

CðN 0Þ ¼ CðN 1Þ > Cð1ÞðN 1Þ: ð5Þ

By Lemma 3, the classical capacity of N is additive, i.e.,

CðN Þ ¼ CðN 0Þ ¼ Cð1ÞðN Þ: ð6Þ

From Eqs. (3), (4) and concavity of CPðN 1Þ with respect to
P, we have CPðN Þ ≤ CPðN 1Þ. Also, CPðN Þ ≥ CPðN 1Þ by
choosing q ¼ 0 in Eq. (3). So we have

FIG. 3. Diagrammatic representation of N .
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CPðN Þ ¼ CPðN 1Þ: ð7Þ

Choose P > 0 according to property 1.3. By Lemma 4,

suppose Cð1ÞP ðN Þ is achieved at some f ~q; ~Pg with
ð1 − ~qÞ ~P ¼ P, i.e.,

Cð1ÞP ðN Þ ¼ ~qCðN 0Þ þ ð1 − ~qÞCð1Þ~P ðN 1Þ: ð8Þ

If ~P ¼ P, we have

CPðN Þ ¼ CPðN 1Þ > Cð1ÞP ðN 1Þ ¼ Cð1ÞP ðN Þ; ð9Þ

where the inequality follows from property 1.3.
If ~P > P and thus ~q > 0,

CPðN Þ ¼ CPðN 1Þ > ~qCðN 1Þ þ ð1 − ~qÞC ~PðN 1Þ
≥ ~qCðN 0Þ þ ð1 − ~qÞCð1Þ~P ðN 1Þ ¼ Cð1ÞP ðN Þ; ð10Þ

where the first inequality follows from property 1.3.
Construction ofN 1—The first two properties forN 1 can

be easily satisfied. One can take a channel with a sub-
additive minimum output entropy [18] and unitally extend
it to a channel with a superadditive classical capacity, via
Shor’s construction [30,31]. Unfortunately, such channels
are poorly understood, and we do not know if it satisfies
property 1.3. We argue that if it does not, we can tensor
product a dephasing channel that will guarantee it is
satisfied, without sacrificing the other properties.
We quote the following property about concave

functions [32]: A concave function uðyÞ is continuous,
differentiable from the left and from the right. The derivative
is decreasing, i.e., for x<y, we have u0ðx−Þ≥u0ðxþÞ≥
u0ðy−Þ≥u0ðyþÞ. We use “�” to denote the right and left
derivatives when needed.
Let EC→C be a random orthogonal channel with sub-

additive minimum output entropy [18] and FRC→C (with
jRj ¼ jCj2) be a conditional quantum channel of the form

F ðρRCÞ ¼
XjCj2
j¼1

XjEðhjjρRCjjiRÞX†
j ; ð11Þ

where Xj’s are the Heisenberg-Weyl operators on C [6].
This ensures F satisfies properties 1.1 and 1.2 [29].
Because of Lemma 2, the useful entanglement assistance

is at most logðjCjÞ. Thus, we restrict to 0 ≤ P ≤ logðjCjÞ.
Let

ϵ ¼ CðF Þ − Cð1ÞðF Þ > 0: ð12Þ
Since

Cð1ÞP ðF Þ ≤ Cð1ÞðF Þ þ P; ð13Þ

CEðF Þ ≤ CðF Þ þ logðjCjÞ − ϵ: ð14Þ

This implies dCPðF Þ=dP cannot always be 1. Thus, there
exists P̄ ∈ ½0; logðjCjÞÞ such that

dCPðF Þ=dP ¼ 1; ∀ 0 ≤ P ≤ P̄ ð15Þ

and

dCPðF Þ=dP < 1; ∀ P > P̄: ð16Þ

Next, we discuss the few different cases. (1) P̄ > 0.
Then CPðF Þ is strictly concave at P̄ by definition. Note

that CP̄ðF Þ ¼ CðF Þ þ P̄ but Cð1ÞP̄ ðF Þ ≤ Cð1ÞðF Þ þ P̄, thus

CP̄ðF Þ − Cð1ÞP̄ ðF Þ ≥ ϵ and N 1 ¼ F satisfies property 1.3.
(2) P̄ ¼ 0. Let N 1 ¼ F ⊗ ΔZ

λ , where ΔZ
λ is the qubit

dephasing channel ΔZ
λ ðρÞ ¼ ð1 − λÞρþ λZρZ. The CQE

trade-off region is additive for Φ ⊗ ΔZ
λ , for any channel Φ;

thus, N 1 satisfies property 1.1. ΔZ
λ satisfies property 1.2,

and by arguments similar to Appendix B of Ref. [23], one
can show N 1 also satisfies property 1.2.
Since dCPðF Þ=dPj0þ < 1, choose λ > 0 small such that

dCPðΔZ
λ Þ=dPj1− > dCPðF Þ=dPj0þ. This ensures that when

0 < P ≤ 1,

CPðN 1Þ ¼ CðF Þ þ CPðΔZ
λ Þ: ð17Þ

Since CPðΔZ
λ Þ is strictly concave with respect to P when

λ < 1=2 [13], CPðN 1Þ is also strictly concave with respect
to P, for 0 < P ≤ 1. Also, when P < ϵ,

CPðN 1Þ ≥ CðF Þ þ CðΔZ
λ Þ

> Cð1ÞðF Þ þ CðΔZ
λ Þ þ P ≥ Cð1ÞP ðN 1Þ;

where the first inequality comes from Eq. (16), the second
one comes from our assumption P < ϵ and Eq. (11), and
the last one comes from Eq. (12).
This ensures that CPðN 1Þ is superadditive. Thus, when

0 < P < minf1; ϵg, CPðN 1Þ is strictly concave and super-
additive, satisfying property 1.3.
Conclusion.—Our work unveils the complications in

characterizing the additivity of the CE capacity region.
In fact, the only known channels that admit an additive CE
capacity region are the quantum erasure channels [13] and
Hadamard channels [23], many fewer than the class of
channels with an additive classical capacity. Coincidentally,
these two classes of channels also admit an additive CQE
trade-off capacity, suggesting a nontrivial connection
[13,23,33].
Also, we do not know the number of shots at which

the superadditivity occurs. However, it is very likely that
our N 1 only has superadditivity in classical capacity up to
two shots [34]. In that case, the superadditivity in classical
capacity with limited entanglement will appear at two
shots.
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