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Thermo-osmotic slip—the flow induced by a thermal gradient along a surface—is a well-known
phenomenon, but curiously there is a lack of robust molecular-simulation techniques to predict its
magnitude. Here, we compare three different molecular-simulation techniques to compute the thermo-
osmotic slip at a simple solid-fluid interface. Although we do not expect the different approaches to be in
perfect agreement, we find that the differences are barely significant for a range of different physical
conditions, suggesting that practical molecular simulations of thermo-osmotic slip are feasible.
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Thermo-osmosis and thermophoresis are phenomena of
great practical interest in the context of nonisothermal
hydrodynamics [1,2], nonequilibrium thermodynamics [3],
thermophoresis [4–6], and the propulsion of active matter
[7]. Thermo-osmosis is usually described phenomenologi-
cally as the induced slippage of fluid along an interface,
due to an applied temperature gradient. Phoretic motion is
driven by the interfacial stresses induced by a temperature
gradient in a microscopic boundary region, where the
properties of the solvent are influenced by the interactions
with the surface (or interface) [4–6].
Clearly, it would be useful to be able to predict thermo-

osmotic slip on the basis of a molecular description of
the solid-liquid interface. However, in practice this is not
simple, because much of the existing theoretical framework
is couched in terms that assume the validity of a local
continuum theory [e.g., Debye-Hückel plus the (Navier-)
Stokes equation] and make drastic assumptions about the
excess enthalpy density and viscosity near the surface [8].
Yet, crucially, near an interface, a continuum description
of the structure or dynamics of a liquid is not allowed.
More ominously, the definition of the stress in a liquid is
not unique. This nonuniqueness has no effect on the
computed value of, say, the liquid-liquid surface tension
[9], but it could affect the prediction of phoretic flows,
where the local value of the stress gradient is what drives
the flow. In this Letter, we consider this problem and
explore novel “microscopic” methods to predict thermo-
osmotic slippage in a simple model system.
The “classical” approach to predict thermo-osmotic

slippage is based on Onsager’s reciprocity relations (see
Ref. [10]). These relations have previously been used in
molecular simulations to compute diffusio-osmotic slip [2].
Derjaguin [11] used Onsager’s linear nonequilibrium
thermodynamics (LNET) approach to derive an expression
for thermo-osmotic slip. His approach exploits the relation
between the flow caused by a temperature gradient and the
excess heat flux due to hydrodynamic flow, resulting in the
following equation:

vs ¼ −
2

η

Z
∞

0

dzzΔhðzÞ∇T
T

; ð1Þ

where ΔhðzÞ is the excess enthalpy density at a height z
above the surface and η is the viscosity. The difficulty with
this expression is that there is some ambiguity in the
microscopic definition of the local excess enthalpyΔhðzÞ, a
quantity that is also not easy to probe in experiments [4].
The key motivation for our work is that, while a

continuum approximation to Eq. (1) may be sufficient
for interaction lengths on the order of tens of nanometers, it
does not work for atomic or molecular liquids that do not
contain free charges. Rather, the excess enthalpy density
ΔhðzÞ is a function of the solvent polarity [12], liquid
structure in the boundary layer [8], temperature, and
pressure. Additionally, the viscosity η can vary dramatically
near a (structured) surface. Our approach circumvents all
these issues: We argue that the numerical tools that we use
can be applied to realistic models that cannot be described
using continuum approaches.
To place the various descriptions of thermo-osmotic

slip in a broader context, we first consider the classical
thermodynamic approach to the problem, based on the
assumption of local thermal equilibrium (LTE). We note
that neither temperature gradients nor, for that matter,
chemical potential gradients can exert a net force on a
fluid element in a bulk liquid. Mechanical forces in liquids
can be caused only by body forces such as gravity or by
pressure gradients. If temperature gradients cause flow near
a surface, it is only because a local pressure gradient is
induced. To clarify this, we first consider the thermody-
namics of the problem. Consider a temperature gradientþx
direction parallel to a hard wall; the z coordinate measures
distance perpendicular to the wall. Dividing the Gibbs-
Duhem relation for an n-component mixture by V and
differentiating with respect to x gives

∂P
∂x ¼

�Xn
i¼1

ρi
∂μi
∂T þ S

V

� ∂T
∂x ; ð2Þ
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where ρi is the number density of species i. The Gibbs-
Duhem equation makes use of the fact that the system is
homogeneous. A stratified system in equilibrium is homo-
geneous in the directions parallel to the stratification but
not perpendicular to it. Hence, here and in what follows,
the “pressure” P refers to a component of the pressure
tensor parallel to the surface (e.g., Pxx). In the bulk, the
pressure is equalized quickly, and the fluid reaches hydro-
static equilibrium. Since the bulk pressure is constant,
Eq. (2) reduces to

�∂μi
∂T

�
P
¼ −sBi ð3Þ

using S ¼ P
iNisi, where si is the specific entropy of

species i and the superscript B denotes a bulk quantity.
At a position z above the surface, the pressure gradient
remains. Assuming that there are no gradients of μi and T
perpendicular to the surface, Eq. (3) can be substituted
into Eq. (2) to give

∂PðzÞ
∂x ¼

�
−
Xn
i¼1

ρiðzÞsBi þ
Xn
i¼1

ρiðzÞsiðzÞ
� ∂T
∂x : ð4Þ

Equation (4) can be simplified by noting that the expression
in brackets is the difference between the specific entropy
at position z and the bulk specific entropy. Since μi and T
do not depend on z, μi ¼ hi − Tsi can be used to rewrite
Eq. (4) as

∂PðzÞ
∂x ¼

�Pn
i¼1 ρiðzÞ½hiðzÞ − hBi �

T

� ∂T
∂x ð5Þ

¼
�
ΔhðzÞ
T

� ∂T
∂x ; ð6Þ

where ΔhðzÞ is the excess enthalpy density at a distance z
from the surface. To compute the flow velocity, we
integrate the expression for the pressure gradient using
the linearized (Navier-)Stokes equation giving

vs ¼ −
1

η

Z
∞

0

dzz

�
ΔhðzÞ
T

� ∂T
∂x : ð7Þ

This is equivalent to Eq. (1) apart from a factor of 2.
The factor of 2 in Derjaguin’s result arises from his missing
a factor of 1=2 in his expression for Poiseuille flow [11].
To relate our LTE expression to Derjaguin’s LNET

approach, consider the slit pore as depicted in Fig. 1.
A pressure and temperature gradient is maintained across
the slit. Fluid flows in the −x direction as depicted by the
arrows. For a one-component fluid, the resulting phenom-
enological equations are

vx ¼ −β11∇P − β12
∇T
T

; ð8Þ

Qx ¼ −β21∇P − β22
∇T
T

; ð9Þ

where vx is the fluid velocity ðm=sÞ and Qx is the heat
flux [J=ðm2 sÞ]. Following Derjaguin [11], by considering
the isothermal heat flux across the pore, β21 can be
expressed as

β21 ¼ −
�
Qx − hBvx

∇P

�
T
: ð10Þ

β21 defined here is conventionally known as the “mechano-
caloric” coefficient. Similarly, by considering the isobaric
mass flux in Eq. (8), we can write

β12 ¼ −
�

vx
ð∇T=TÞ

�
P
: ð11Þ

Assuming that the hydrodynamic flow in Eq. (10) is linear
in the boundary layer vxðzÞ ¼ −dz∇P=η and substituting
Eq. (7) for vx in Eq. (11) immediately shows β12 ¼ β21 as
expected. This provides the link between our LTE and
Derjaguin’s LNET approach.
The usual definition of the “slip” velocity is the extrapo-

lated velocity at the interface, where the fluid density
approaches zero. For a thin boundary layer, the slip velocity
is equal to the fluid velocity in the bulk just outside the
boundary layer. β12 in Eq. (11) is the “thermo-osmosis”
coefficient.
Of course, the analytical theory given by Eqs. (5)–(7)

is inappropriate for a molecular description of slip.
The viscosity η is not constant near the interface. To avoid
making such continuum assumptions, we compute the
thermo-osmotic slip, using a mechanical route, i.e., by
computing the force on a volume element directly from
the gradient of the microscopic stress. Such an approach
could be problematic due to the nonuniqueness of the
definition of the microscopic stress. Han [13] postulated a
similar approach; however, he did not validate his results.

FIG. 1. Atomic fluid (blue) interacting with solid walls (gray) in
a slit pore. 2d is the gap width.

PRL 119, 038002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

038002-2



We start with the relation between the stress gradient and
fxðzÞ, the force per unit volume on a fluid element at a
distance z from the surface. Rather than computing the
stress gradient in a nonequilibrium simulation, we use the
fact that Pxx depends on x, only through T. Hence,

fxðzÞ ¼ −
�
Peq;T2
xx ðx; zÞ − Peq;T1

xx ðx; zÞ
T2 − T1

��∂T
∂x

�
; ð12Þ

where the superscript eq denotes equilibrium calculations
that are both carried out at the same bulk pressure. With this
method, ΔP=ΔT is determined, and for any ∂T=∂x,
fxðzÞ can be computed via Eq. (12). The thermo-osmotic
force per particle fPx ðzÞ ¼ fxðzÞ=ρaveðzÞ, where ρaveðzÞ ¼
½ρðT1; zÞ þ ρðT2; zÞ�=2. To compute the thermo-osmotic
flow, we carry out a second simulation at the average
temperature Tave ¼ ðT1 þ T2Þ=2, where we apply the local
body force fPx ðzÞ to fluid particles. The resulting slip
velocity and therefore β12 can then be computed.
The calculation as described above is complicated by the

fact that the pressure tensor in an inhomogeneous fluid is
not unique [14,15]. Irving and Kirkwood (IK) [16] proposed
an expression by integrating the total momentum flux acting
across a virtual surface element. This approach gives the
appropriatemechanical force balance normal to the interface.
However, as argued by Schofield and Henderson [9], the
definition of the pressure tensor is not unique, since any term
with a vanishing divergence can be added without changing
the momentum flux. All common definitions do, however,
yield the correct surface tension.
In a simulation, we need to know the thermo-osmotic

force acting on atoms, as opposed to the force on the
fictitious surface of a volume element. This would suggest
that the atom-based virial (V) expression for pressure might
be preferable.
In order to determine if the choice of the pressure affects

the computed thermo-osmosis coefficient, we computed
Pxx in Eq. (12) using both the V and IK expressions. The V
pressure is given by [17]

PV
xxðzÞ ¼ hρðzÞikBT −

1

2VðzÞ
�XNðzÞ

i

X
j≠i

x2ij
rij

ϕ0ðrijÞ
�
; ð13Þ

where rij is the distance between atoms i and j, xij is the
distance in x, ϕðrijÞ is the interaction potential between the
atoms, and VðzÞ and NðzÞ are the bin volume and number
of atoms, respectively, in the bin at position z. The IK
pressure is computed using [18]

PIK
xxðzÞ ¼ hρðzÞikBT

−
1

2A

�XN
i

X
j≠i

x2ij
rij

ϕ0ðrijÞ
jzijj

Θ
�
z − zi
zij

�
Θ
�
zj − z

zij

��
:

ð14Þ

In addition to these “mechanical” expressions for the
thermo-osmotic force, consider the right-hand side of
Eq. (5). We express the local specific enthalpy as

hðzÞ ¼ uðzÞ þ PV
xxðzÞ
ρðzÞ ; ð15Þ

where u is the specific internal energy. In Eq. (15), we have
made explicit that the pressure that enters into the expres-
sion for the local enthalpy must be the component that is
parallel to the surface, as argued below Eq. (2). The body
force on a fluid element at a height z above the surface is
then given by

fxðzÞ ¼ −
ρðzÞ½hðzÞ − hB�

T

�∂T
∂x

�
: ð16Þ

Equation (16) can be computed in a simulation thermo-
stated at Tave and applied as a body force in the same vein
as Eq. (12).
We compare the above calculations of the slip coefficient

with the result for β21 that follows from Derjaguin’s
approach based on the Onsager reciprocity relations.
In this case, a uniform pressure gradient represented
by a body force is applied during a simulation at Tave.
β21 is computed via Eq. (10) (see Supplemental Material S2
[19]). The mechanical and LTE approaches for computing
β12 and the “Derjaguin” method for computing β21 should
be equivalent if the temperature and pressure gradients are
small enough to ensure that the resulting response is linear.
Thus, we also include in this Letter the first molecular
simulation of the mechanocaloric effect.
All molecular dynamics simulations reported here were

performed using the LAMMPS package [20]. The simulation
setup is depicted in Fig. 1. The system consists of
N ¼ 2640 fluid atoms interacting with other fluid atoms
and solid atoms via a truncated and shifted Lennard-Jones
potential:

V truncðrÞ ¼
�
4ϵ½ðσrÞ12 − ðσrÞ6� − VðrcÞ r ≤ rc;

0 r > rc;
ð17Þ

where rc ¼ 4σ, σfluid-fluid ¼ σsolid-fluid¼ σ, and ϵfluid-fluid ¼ ϵ.
Two different wall-fluid interactions were investigated: a
less attractive Lennard-Jones potential where ϵsolid-fluid ¼
0.55ϵ and a purely repulsive Weeks-Chandler-Andersen
(WCA) potential [21] such that rc ¼ 21=6σ for solid-fluid
interactions. Solid atoms are bonded via harmonic springs
to their nearest neighbors in an fcc lattice of density 0.9σ−3.
The stiffness kbond ¼ 5000ϵ=σ2, and the rest length is
1.1626σ. All computed quantities are expressed in
Lennard-Jones reduced units.
NVT dynamics with a time step Δt ¼ 0.001τ were run

to equilibrate the system. This was accomplished using a
Nosé-Hoover thermostat for 100 000 MD steps. For an
additional 100 000 steps, the system was barostated at
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P ≈ 0.122 by applying a downward force to the top wall
atoms.
Using the pressure profiles [see Supplemental Material,

Figs. S1(a) and S1b) [19]], ΔPxxðzÞ=ΔT was computed
for the three temperatures shown in Figs. 2(a) and 2(b).
Encouragingly, the choice of the pressure tensor makes no
significant difference to the measured response.
At constant temperature Tave, the specific kinetic energy

is uniform everywhere and therefore computed by dividing
the total average kinetic energy by the number of atoms.
For the same temperatures, the specific potential energy
profiles were spatially averaged in z. Using the profiles of
Pxx [Fig. S1(a) [19]] and density profiles [Fig. S1(c) [19]],
ΔhðzÞ=T was computed via Eqs. (15) and (16) and shown
in Fig. 2(c).
We note that theV and IKexpressions [Figs. 2(a) and 2(b)]

and the LTE quantity [Fig. 2(c)] show similar qualitative
behavior. The body force vanishes in the bulk, and the
profiles flatten and shift outward as the temperature is
increased.
The body force per particle fPx ðzÞ can be computed by

dividing the profiles in Figs. 2(a)–2(c) by ρðzÞ [Fig. S1(c)
[19]] and multiplying by a sufficiently small gradient,
e.g., ∂T=∂x ¼ 0.0005 for WCA wall-fluid interactions.
To compute slip, nonequilibrium simulations were carried
out by applying these forces to the equilibrated systems at
the appropriate temperatures. To obtain reasonable statis-
tics, forces were applied for 108 steps until the fluid
approached a steady velocity. The slip was then computed
for an additional 2 × 108 steps.
Figures 3(a) and 3(c) show calculations of the slip

velocity. Interestingly, although the mechanical and LTE
approaches give different force profiles (Fig. 2), they predict

the same velocity far away from the surface. The flow profile
computed at T ¼ 0.9 [Fig. 3(b)] shows that for WCA wall
interactions the velocity decreases monotonically, indicating
that the viscosity close to the surface is constant. For less
attractive Lennard-Jones [Fig. 3(d)], the viscosity and forces
are clearly not constant showing significant departure from
(Navier-)Stokes and Derjaguin’s result [Eq. (1)].
To compare our stress gradient and LTE approaches with

Derjaguin’s method (see Supplemental Material S2 [19]),
β12 was computed via Eq. (11) using the slip calculations
shown in Figs. 3(a) and 3(c). Figure 4 shows a comparison
of all three methods. For the range of temperatures, there
appears to be reasonable agreement. For T ∼ 96�120 K in
argon units, the thermo-osmosis coefficient ranges from

(a)

(b)

(c)

FIG. 2. −ΔPxxðzÞ=ΔT ½kB=σ3� computed using the (a) IK and
(b) V pressure tensor; e.g., the profile for T ¼ 0.8 is computed by
taking the difference in Pxx at T ¼ 0.85 and 0.75 and dividing by
ΔT ¼ 0.1. (c) WCA wall-fluid interactions significantly exclude
volume and thereby create a large enthalpy difference at the
surface. The solid wall is located at z ∼ 0.

(a) (b)

(c) (d)

FIG. 3. Calculations of the slip velocity and flow profile for
different wall-fluid interactions: (a),(b) WCA at ∇T ¼ 0.0005
and (c),(d) Lennard-Jones (ϵwf ¼ 0.55ϵ) at ∇T ¼ 0.003.

(a)

(b)

FIG. 4. Comparison of Onsager reciprocal relations, β12 com-
puted via our stress gradient (circles, crosses) and LTE (squares)
approaches and β21 calculated by following Derjaguin’s LNET
method (diamonds). Thermo-osmosis coefficients are computed
for (a) WCA (∇T ¼ 0.0005, ∇P ¼ 0.00004) and (b) Lennard-
Jones (∇T ¼ 0.003, ∇P ¼ 0.0005) interactions.
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0.85–3.8 × 10−8 m2=s for less attractive Lennard-Jones
and 4.2–5.6 × 10−6 m2=s for WCA walls.
As expected, the slip velocities for solely repulsive wall-

fluid interactions are considerably larger than those for
interactions with an attractive component. Furthermore,
both cases demonstrate an approximately linear depend-
ence of the thermo-osmosis coefficient with respect to the
temperature.
In addition to the methods described above, we also

attempted to compute β21 using the linear-response theory
[22]. However, no reliable results were obtained, as the
statistical noise overwhelmed the signal.
Previous molecular-simulation studies of thermal trans-

port have dealt with the Soret coefficient of atomic species
[23,24]. One cannot directly compare the Soret coefficient
ST with our computed values of the thermo-osmosis
coefficient β12, since the separation between excess and
bulk enthalpy density becomes meaningless if all particles
have the same size. As a rough comparison, given that
ST ¼ ðβ12=TÞ=DAr, taking the average of our computed
values of β12 for T ¼ 0.8 and 0.9 and using DAr ≃ 2.47 ×
10−5 cm2 s−1 as reported in Ref. [24], we compute
ST ∼ 0.047 K−1, which is the same order of magnitude
as ST ∼ 0.014 K−1 at T ¼ 0.85 reported by Ref. [24].
In summary, we have considered three different methods

to compute thermo-osmotic slip on the basis of molecular
simulations. The first approach is based on a computation of
the thermally induced stress gradient method, computed
using equilibrium simulations and then represented as a
body force in nonequilibrium simulations. We find no
evidence that different choices for the pressure tensor lead
to different results. In the second approach, we compute the
excess enthalpy density near the wall and use a local-
thermodynamics formalism to derive the body force acting
on the fluid. Thesemethods do not assume thatmacroscopic
thermodynamics or hydrodynamics holds close to an inter-
face. The final approach is based on Onsager’s reciprocal
relations, which allow us to derive thermo-osmotic slip
from the excess heat flux due to a pressure gradient.
The key results are encouraging and surprising: For

certain wall-fluid interactions, the thermo-osmotic flow
profile does not monotonically depend on the distance from
the surface, indicating that the viscosity and forces near the
surface are not constant. Furthermore, we find that all
methods yield results for the thermo-osmosis coefficient
that do not differ significantly. Hence, the choice of the
method to compute thermo-osmotic slip seems to be a
matter of taste or convenience.
The data presented in this work was generated using

LAMMPS, which is publicly available at [25].
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