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The shape of a polymer plays an important role in its interactions with surrounding molecules. We
characterize the shape and the orientational properties of a polymer chain under tension in a good solvent, a
physical condition that is often realized both in single-molecule experiments and in vivo. Our findings
reveal the existence of hitherto unobserved universal laws encompassing polymers with different rigidities
and including the possible presence of excluded-volume effects, showing that both shape and orientation
are solely determined by the force contribution to the free energy. In doing so, they also provide a simple
way to retrieve these quantities from the knowledge of the force-versus-extension curve.
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Polymer chains are strongly fluctuating objects. Because
of their soft nature, they do not have well-defined shapes,
but rather adapt their conformational ensembles to the
environment. At the same time, the shape of a polymer
affects the mutual interactions with other molecules in
solution, e.g., quantitatively determining the excluded
volume of the chain [1,2]. In a poor solvent, polymers
collapse into a roughly spherical shape, as seen, for
example, in the case of single-chain globular proteins
[3]. In the case of θ- or good-solvent conditions, con-
formations can fluctuate more wildly and the shape of a
polymer is particularly sensitive to the environment. In the
last two decades, many theoretical and experimental works
have investigated how the shape depends on several factors
such as confinement [4–8], topology [9–11], or crowding
[3,12–14], which are relevant to many cellular processes.
A topic of broad interest in polymer physics is certainly

the response of a polymer chain to the action of a
mechanical force, a situation that is very frequent both
in vivo and in vitro. For example, during replication DNA
is repeatedly pulled and twisted by enzymes [15], and
proteins are actively pulled by chaperones across mem-
branes and out of ribosomes [16–22]. Moreover, the recent
development of several single-molecule techniques such as
atomic force microscopy and optical and magnetic tweezers
has stimulated a large amount of experimental work
involving polymer stretching [23]. From the theoretical
point of view, the effect of an external pulling force on the
shape of a polymer in a poor solvent has been previously
addressed by means of Langevin simulations [24].
In this Letter, we study the deformation of a polymer

under a pulling force in a good solvent. Our findings unveil
the presence of a universal behavior in both the shape and
orientation of stretched chains of different sizes and rigidi-
ties. These results hold regardless of the presence of
excluded volume, even in the regime where the latter is
strongly affecting the response of the polymer as measured
by the force-versus-extension curve. In Fig. 1 we show a

schematic picture recapitulating the evolution of the poly-
mer as the tension is increased. As the picture qualitatively
shows, the effect of an external force on a chain is twofold.
Small forces mostly affect the overall orientation of the
polymer, aligning it along their direction [25] (left region in
Fig. 1). Beyond this “dipolelike” regime, the tension
strongly deforms the polymer, thus leading to an increase
in the anisotropy of its average shape (right region in Fig. 1).
We start our analysis by considering the simple case of a

freely jointed chain (FJC). Apart from describing the
behavior of virtually all kinds of polymers at extremely
high forces [26], this model also enables the computation
of analytical results for most of the relevant quantities. We
will show later by means of numerical simulations that our
results are valid also for more realistic models. The simplest
quantities used to determine the conformation of a chain are
the mean square of the end-to-end vector Re and the radius
of gyration Rg [1]. In the case of a FJC ofN monomers with
a Kuhn length b under an external force f, they can be
computed straightforwardly, giving

hRe
2i ¼ Nb2ð1 − L2Þ þ N2b2L2 ð1Þ

FIG. 1. Schematic illustration of the effect of an external force
on a polymer in a good solvent.
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and

hR2
gi ¼

1

6
Nb2 þ 1

12
N2b2L2; ð2Þ

where LðγÞ is the Langevin function and γ ¼ fb=kBT, kB
being the Boltzmann constant and T the temperature (see
Sec. S1 in the Supplemental Material [27]). As expected, we
find the unperturbed results hRe

2i≃ Nb2; hR2
gi≃ Nb2=6

when γ → 0, and the typical values of a rod hRe
2i≃ N2b2;

hR2
gi≃ N2b2=12 in the limit of infinite forces. The transition

between the two regimes takes place at a force γ ∼ 1=
ffiffiffiffi
N

p
, in

agreement with previous perturbative results [28].
In order to capture the presence of anisotropies,

we consider the inertia tensor T , whose elements are
T αβ ¼ ½1=ðN þ 1Þ�PN

i¼0 ðαi − αcmÞðβi − βcmÞ, where α
and β are space coordinates and ðxcm; ycm; zcmÞ is the
position of the center of mass of the chain [29]. The
ensemble averages of the eigenvalues ofT of an unperturbed
FJC are in the ratios hλ1i∶hλ2i∶hλ3i ¼ 11.8∶2.7∶1, which
indicate a pronounced asymmetry in the spatial distri-
bution of the monomers [29]. A useful global index to
determine the average shape of a chain in three dimensions
is provided by the asphericity [29,30]:

A≡
P

shðλs − λ̄Þ2i
6hλ̄2i ¼ 3hTrðT 2Þi

2hðTrT Þ2i −
1

2
; ð3Þ

where λ̄ ¼ P
sλs=3 ¼ hR2

gi=3. The asphericity of an unper-
turbed FJC can be computed analytically and it has been
shown that, at the leading term, A ¼ 10=19≃ 0.526,
independently of N [29]. We extended the computation to
the case of a stretched FJC following an approach proposed
by Rubinstein for the computation of hR2

gi in the case of an
unperturbed FJC [1]. The main idea consists in rewriting the
terms appearing in Eq. (3) as suitable sums of the average
squared end-to-end distances of subchains of the polymer.
Since for a FJC the force is applied independently to each
bond, the averages can be computed by applying Eq. (1) to
the subchain under consideration. The complete derivation
and the full explicit formula forA are reported Sec. S2 of the
Supplemental Material [27]. Retaining only the leading
terms, the asphericity can be written as

A ¼ 120þ 60ηþ 5η2

228þ 84ηþ 5η2
; ð4Þ

where η≡ f · hRei=kBT. This formula accurately approx-
imates the exact solution, with a maximum relative error
below 1% for reasonably long chains (N > 20). According
to Eq. (4), the asphericity of a FJC depends only on the force
contribution to the free energy of the system, irrespective of
the size of the chain. This universal behavior extends also to
more realistic models accounting for the rigidity of the
polymer or the presence of excluded-volume effects. This
can be clearly seen fromFig. 2, wherewe report the values of

A as a function of η obtained from Langevin simulations
[31] of wormlike chains with several rigidities, with and
without excluded volume (see Sec. S3 of the Supplemental
Material for technical details [27]). The data from the
simulations nicely collapse onto the same master curve
identified in the FJC case [Eq. (4), continuous curve],
regardless of the particular model considered. In Fig. S2
of the SupplementalMaterial [27] we report the correspond-
ing force-versus-extension curves, which show that both
rigidity and (when present) excluded volume significantly
affect the response of the chain in the considered range of
forces. Indeed, the results without excluded volume fall onto
the theoretical wormlike chain (WLC) formula (dashed
curve), which departs from the corresponding FJC predic-
tion (dotted curve), thus indicating the importance of rigidity
in the response of the chain. Analogously, significant effects
from excluded volume are reflected in the departure of the
corresponding points from theWLC formula. Nevertheless,
we stress that this collapse is not exact, particularly at low
forces, as we can see in the inset of Fig. 2. Finally, we note
that Eq. (4) enables a direct computation of the asphericity
from the knowledge of the variable η, which can be easily
accessed in pulling experiments. For example, in Sec. S11 of
the Supplemental Material we deduce the asphericity
corresponding to force-versus-extension data obtained for
dsDNA [27,32,33], which can be properly modeled by
means of the WLC model [34].
We now turn our attention to the behavior of the

eigenvalues and eigenvectors of the inertia tensor. In
Fig. 3 (top) and Fig. S3 of the Supplemental Material
[27] we report the average eigenvalues of T obtained from

FIG. 2. Asphericity as a function of η ¼ f · hRei=kBT for
different models. The data correspond to WLCs of length L ¼
1000 characterized by rigidities k ¼ 1 (red diamonds), k ¼ 2
(blue hexagrams), and k ¼ 4 (orange triangles). The green
pentagrams correspond to a self-avoiding walk. Full and empty
symbols respectively denote chains with (E) and without (P)
excluded volume. The continuous black line represents the FJC
formula reported in Eq. (4). Inset: Enlargement of the plot for
small values of η.
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Monte Carlo (MC) simulations in the case of the FJC (see
Sec. S3 of the Supplemental Material for technical details
[27]). For large forces, the rodlike behavior dominates the
eigenvalue response in the longitudinal direction (λ1 ∝ N2),
while the size dependence of an unperturbed chain is
expected to hold for the transverse extension of the polymer
(λ2;3 ∝ N). Quantitatively, the largest eigenvalue λ1 gives
the leading contribution to Rg2. From Eq. (2), we thus
expect hλ1i≃ N2b2L2=12, which is verified by MC sim-
ulations (Fig. S3 of Ref. [27]), with small but systematic
deviations that decrease for longer chains. Analogously,
the two remaining eigenvalues are expected to behave
in the same way as the transverse contributions to R2

g. We
thus predict that for the large-force regime one has hλ2i≃
c2Nb2L=γ and hλ3i≃ c3Nb2L=γ, where c2 and c3
are numeric constants. A simple estimation of c2 and c3
can be obtained by solving the eigenvalue equation
for T with preaveraged coefficients (see Sec. S6 of
Ref. [27]), and gives c2≃ð1þ ffiffiffiffiffiffiffiffiffiffi

3=14
p Þ=15≃0.098 and c3≃

ð1− ffiffiffiffiffiffiffiffiffiffi
3=14

p Þ=15≃0.036. Our ansatz is confirmed in Fig. 3
(top), where the continuous curves are obtained by tuning
the coefficients in order to globally fit the MC data obtained

for γ > 1 and correspond to c2 ¼ 0.100� 0.001 and
c3 ¼ 0.034� 0.001, in good agreement with the estimated
values. Intriguingly, hλ2i and hλ3i show a nonmonotonic
behavior for small forces. A comparison with the average
orientation of the corresponding eigenvectors (see Figs. S5
and S6 of Ref. [27]) shows that the range of forces with
increasing λ2, λ3 corresponds to a regime where the
ellipsoid is not aligned with the force. Therefore, an
intuitive explanation of this feature is that, because of
the random orientation of the polymer (see the left region in
Fig. 1), on average in this regime the force deforms the
ellipsoid almost isotropically, thus leading to an increase of
all the eigenvalues. In contrast, after the alignment has been
achieved (right region in Fig. 1), only hλ1i keeps growing,
while the other eigenvalues shrink due to the decreasing
fluctuations in the directions perpendicular to the force.
Notably, in the large-force regime hλ2i=hλ3i ¼ c2=c3 ≃

3 for all values of N [Fig. 3 (bottom)]. The implication is
that, once the polymer is aligned with the force, the section
of the ellipsoid shrinks while preserving a uniform trans-
verse shape that is independent of the size of the chain
(inset). We note that this section does not correspond to the
projection of the polymer onto the xy plane. Because of
the independence of the three directions of a random walk,
the projection has the same features of a two-dimensional
FJC, and its shape properties are obtained by diagonalizing
the submatrix of the inertia tensor identified by the
elements T xx; T xy;T yy. As we report in Fig. 3 (bottom),
the ratio between the averages of its eigenvalues λmax

xy and
λmin
xy closely follows the behavior of a two-dimensional FJC
(red continuous curve), but is larger than hλ2i=hλ3i. The
reason for this discrepancy lies in the fact that the major
axis of the ellipsoid gives a significant contribution to the
xy projection even in the regime of large forces (see Sec. S5
of the Supplemental Material for details [27]). A similar
trend is observed for the WLCmodel and in the presence of
excluded volume. Naturally, the explicit formula for hR2

gi
depends on the particular model considered; thus, the
eigenvalues show nonuniversal behaviors (see Figs. S7,
S8, and S9 of Ref. [27]). However, in all the studied cases
the ratio hλ2i=hλ3i promptly falls onto a constant value as a
function of the external force (Fig. S10 of Ref. [27]). The
presence of a uniform shrinking of the transverse section
of the ellipsoid encompasses all the different models
considered, thus outlining a novel universal behavior in
the shape of polymers. Moreover, the value of the plateau is
always very close to 3, although slight differences between
the different models are clearly observed, with larger
deviations for stiffer polymers.
In order to study the overall orientation of a stretched

polymer, we now consider the eigenvectors of T . In Fig. 4
and in Figs. S11–S13 of Ref. [27] we show the average
values of cosψ s, where ψ s is the angle between the applied
force and the eigenvector corresponding to the eigenvalue
λs, as a function of η. Even for this quantity, all the data

FIG. 3. Top panel: normalized eigenvalues λ2=Nb2 (main) and
λ3=Nb2 (inset) as a function of γ, for several values of chain size
N. The continuous curves are the corresponding fitting functions
reported in the main text. Bottom panel: aspect ratio of the xy
projection of the chain and of the transverse section of the
ellipsoid. The continuous red line shows the aspect ratio of a
pure two-dimensional FJC, which we found to be equal to
4.95� 0.01. Inset: sketch of the shape of the transverse section
of the chain for different values of γ. The arrow indicates the
direction of increasing γ. The blue dashed line sketches the
typical shape of a two-dimensional FJC.
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corresponding to different sizes and models collapse onto a
master curve. In this regard, we observe that the alignment
of the ellipsoid to the external force is analogous to the
behavior of an electric dipole in the presence of an external
field [35], although here a 180° rotation results in the same
physical state. Within this analogy, we can consider a
dipole moment equal to αjhReij=kBT, where α is a
proportionality constant, and directed along the main axis
of the ellipsoid, as sketched in Fig. 4. The dipole potential
is αη cosψ1, and the average cosines are (see Sec. S9 of
Ref. [27])

hcosψ1i ¼
1

1 − e−αη
−

1

αη
ð5Þ

and

hcosψ2i ¼ hcosψ3i ¼
I1ðαηÞ
sinhðαηÞ ; ð6Þ

where I1 is the modified Bessel function of the first kind.
The constant α can be determined by considering the
large-force behavior in the case of a FJC. Indeed, from
Eq. (5), we can estimate the average sine of ψ1 for γ ≫ 1

as hsinψ1i≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðαNγLÞp

. Moreover, since in this limit
hλ1i≃ ðNbLÞ2, while its xy projection is given by
c1Nb2L=γ, we also have

hsinψ1i≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1Nb2L
γhλ1i

s
≃

ffiffiffiffiffiffiffiffiffiffi
12c1
NγL

s
: ð7Þ

Comparing the two formulas for hsinψ1i, we find
α ¼ 1=ð6c1Þ≃ 5=6≃ 0.83. Inserting this value into

Eqs. (5) and (6), we obtain the continuous curves showed
in Fig. 4 and Figs. S11–S13 of Ref. [27]. The remarkable
agreement between our ansatz and the simulations shows
that the dipole analogy can capture even quantitatively the
behavior of the ellipsoid in the whole range of forces.
In conclusion, we have provided a quantitative descrip-

tion of the deformation of a polymer under the effect of an
external force f . Our findings unveil the existence of a
universal response of the stretched chain, both in its shape
and orientation properties. Indeed, on the one hand we have
shown that at large forces the transverse section of the
polymer shrinks maintaining a constant aspect ratio, which
is different from the projection of the chain on the plane
perpendicular to the force. On the other hand, the overall
shape and orientation of the polymer (described by the
asphericity and the direction of the principal eigenvector of
the inertia tensor) depend on f only by means of the
combination η ¼ f · hRei=kBT [Eqs. (4)–(6)], representing
the contribution of the force to the free energy. These
results hold irrespective of the size and the rigidity of the
polymer, or the possible presence of excluded-volume
effects. Apart from their interest from a polymer-physics
perspective, our results provide a handy tool to access the
average shape and orientation of a chain in a good solvent
from the mere knowledge of its force-versus-exten-
sion curve.
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