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We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range
order and global phase coherence, can be created in one-dimensional solid state electron systems. The
mechanism by which this happens is to introduce a single particle hybridization of electron and hole
populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner
theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order,
enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We
show that the temperatures below which a substantial condensate fraction would form could reach hundreds
of Kelvin, a benefit of the weak screening in one-dimensional systems.
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Excitons are composite bosons formed from paired
electrons and holes. They can be produced either by optical
pumping of carriers between bands, or by bringing physi-
cally separate electrons and holes in close proximity. This
latter type, called “bilayer excitons,” occurs because the
mutual Coulomb interaction between the layers induces a
many-body instability, allowing the excitonic state to
form. Under certain conditions, these composite bosons
may condense into a Bose-Einstein condensate with off-
diagonal long-range order (ODLRO) and a global coherent
phase [1]. Such a condensate has been observed for
optically pumped excitons [2], and bilayer excitons in
the quantum Hall regime [3]. In zero magnetic field,
exciton based generation of thermoelectricity has been
proposed [4], and when condensed, bilayer excitons have
been predicted to provide electrical transport across their
bulk that is only limited by contacts and a linking resistor
[5]. The predicted dissipationless current between layers is
a direct result of the existence of the condensate and has
been explored as the basis of valuable devices, such as
ultralow power transistors [6].
However, a condensate of bilayer excitons in zero mag-

netic field has never been observed in an experiment on two-
dimensional materials [7–11]. Possible reasons include the
critical temperature of the many-body instability being
simply too low, due to strong screening of the interlayer
Coulomb interaction in two dimensions [12]. Another reason
might be the destruction of Fermi surface nesting by charged
impurity disorder [13,14]. Both of these factors could be
mitigated by working with one-dimensional (1D) bilayers,
such as twoparallel nanowires [15]. Screening is known to be
generally muchweaker in 1D systems [16,17], implying that
the interlayer interaction would be more effective in 1D. As
robustness against disorder derives from themagnitude of the
order parameter [13,14], this absence of screening would
enhance the stability of the 1D exciton condensate (EC) in
this respect as well.

The chief obstacle to any condensate of quantum
particles in 1D is the Mermin-Wagner (MW) theorem,
which prohibits spontaneous breaking of a continuous
symmetry, and thus ODLRO, due to the enhancement of
quantum fluctuations [18]. In this work, we show that for
1D bilayer excitons, a very weak single particle tunneling
between the two layers can lead to a true EC with ODLRO
as the tunneling explicitly locks the phase of the relevant
mode and thus the MW theorem no longer applies.
Electron-hole attractions can then strongly feed into this
small tendency towards ODLRO, resulting in large
enhancements of all properties of the EC. This EC is a
true many-body condensate characterized by one large and
one small excitation gap, both of which can be probed
experimentally.
We employ highly accurate density matrix renormaliza-

tion group (DMRG) numerics [19] to compute the ground
and thermal state of the many-body system. We show that
the smaller gap sets the temperature scale on which
crossover to the EC occurs. We also describe experimental
probes of the EC by determining the nonlinear dc current-
voltage characteristic of an interlayer transport measure-
ment, and computing the density of states that would be
probed in a STM experiment. Finally, we compute the
ground states for systems with realistic length and energy
scales and show that the EC can be realized at high
temperatures after accounting for long-range electron-
electron interactions.
We consider a generic setup, two parallel quasi-1D

electron systems (“wires,” hence), shown in Fig. 1(a).
Gates shift the electron bands such that the minimum of
the conduction band for the upper wire is below the
maximum of the valence band for the holelike lower wire.
Weak interwire (IW) tunneling t⊥ results in a joint chemical
potential and, in the absence of interactions, the opening of a
small single particle gap δsp¼2t⊥ [Fig. 1(b)]. To be com-
patible with the DMRG, we consider a 1D space with 2M
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lattice points (M points in each wire), corresponding either
to real atoms in a 1D chain or to a discretized continuous
1D space. Introducing interactions, the Hamiltonian for
this system is Ĥ ¼ Ĥu þ Ĥl þ Ĥμ þ ĤIWI þ ĤIWT with
individual terms

Ĥw ¼−
XM

x¼1

twðĉ†xwĉxþ1wþH:c:Þþ
XM

x;y¼1

Uwðjx−yjÞn̂xwn̂yw

and

Ĥμ ¼
XM

x¼1

μdiff
2

ðn̂xu − n̂xlÞ:

Here, w ∈ fu; lg is the wire index, ĉxw and ĉ†xw are electron
field annihilators and creators at site x in wire w,
n̂xw ¼ ĉ†xwĉxw, and Uu ¼ Ul is intrawire electron-electron
interaction strength. The opposite band curvatures imply
tu ¼ −tl ≡ t > 0, and the chemical potential difference μdiff
is used to tune the filling fraction of electrons inside each
wire. The IW terms are

ĤIWI ¼
XM

x;y¼1

Uulðjx − yjÞn̂xun̂yl;

ĤIWT ¼ −t⊥
XM

x¼1

ðĉ†xuĉxl þ H:c:Þ;

where Uul is the IW interaction potential. To simplify the
analysis and keep the required computational effort under
control, we treat spinless electrons, as could be achieved, for
example, by external magnetic fields (see Supplemental
Material [20]).
It is the IW tunneling that enables exciton condensation

in 1D. A particle-hole transformation for the hole wire
shows ĤIWT serving as the bias field for electron-hole pairs.
Without interactions, the ODLRO due to ĤIWT is a trivial
single particle effect brought on by the opening of the
single particle gap δsp. In the following, we show that the
IW repulsion between electrons ĤIWI will feed strongly
into this tiny nucleus of ODLRO and lead to a truly many-
body EC. This gives a massive enhancement of EC
properties such as the temperature below which the system
is close to the EC ground state, and the response to applying
IW current and voltage. These properties are not affected by
the explicit symmetry breaking nature of IW tunneling,
which will attempt to fix the global condensate phase to a
particular value. This phase-locking effect was studied for
bilayer systems, and most properties of the EC (including
the technologically interesting ones) only rely on having a
large condensate amplitude [5]. Fully capturing the effects
of the nonperturbative interplay of IW tunneling and the
interactions Uu, Ul, and Uul requires the DMRG.
To illustrate the key features of the EC in 1D, we first

study a model system where electrons have no intrawire
and purely local IW repulsion, so that Uu ¼ Ul ¼ 0 and
Uulðjx − yjÞ ¼ U⊥δx;y. Once this is established, we show
that with strong and long-range intrawire interactions, a
nontrivial and measurable EC still forms.
For the model system we calculate the ground states of Ĥ

and their exciton correlations CexðxÞ ¼ hĉ†0uĉ0lĉ†xlĉxui for a
grid of values of t⊥ andU⊥, fixing the filling fraction in the
electron wire at 0.1. In Fig. 1(c) we plot CexðxÞ forU⊥ ¼ 2t.
The ODLRO is characterized by this exciton correlator
approaching a finite value at long distances. When t⊥ ¼ 0

this cannot happen and CexðxÞ decays as ∝ x−Ka−1=Ks , as
predicted by bosonization and the MW theorem (see the
Supplemental Material [20], and Ref. [21]). In contrast,
when t⊥ ≠ 0 the exciton correlator remains finite at large x,
indicating the presence of ODLRO and a stable EC.
Decreasing t⊥ by an order of magnitude only halves the
strength of the ODLRO. Because the DMRG uses a lattice
with open boundaries, we see end effects where CexðxÞ
oscillates on a scale inversely proportional to the small
EC gap, δ, described below. This is analogous to the
penetration length of a superconductor. The noninteracting

FIG. 1. (a) Sketch of the proposed system. (b) Band structure of
noninteracting electrons in parallel nanowires with weak inter-
wire tunneling t⊥. The tunneling forces a gap δsp ¼ 2t⊥ (solid
shaded lines) to open at the Fermi level. (c) Spatial dependence of
the exciton-exciton correlator, showing the strong enhancement
of excitonic off-diagonal long-range order in the ideal model at
zero temperature when U⊥ ¼ 2t, for t⊥ ¼ 0.001t (blue dashed
line), t⊥ ¼ 0.0025t (orange dotted line), t⊥ ¼ 0.005t (green
dash-dotted line), t⊥ ¼ 0.01t (purple solid line), t⊥ ¼ 0 (grey
solid line). Free electrons (U⊥ ¼ 0) with t⊥ ¼ 0.01 (black dashed
line) shown for comparison. (d) Ratio of the order parameter A of
the exciton condensate with interactions (U⊥ ≠ 0) to the non-
interacting case (i.e., free fermions, U⊥ ¼ 0). In all cases, we see
that sufficient U⊥ can enhance the excitonic order by an order of
magnitude or more. The line styles match (c). Results in (c) and
(d) are for M ¼ 300.
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case, U⊥ ¼ 0, shown at t⊥ ≠ 0 in Fig. 1(c) reveals the
crucial importance of the IW interactions for enhancing the
magnitude of the ODLRO in the EC.
To quantify directly how electron interactions dominate

the EC physics compared to the trivial gapped state of free
electrons, Fig. 1(d) shows how the real space order
parameter A ¼ hĉ†0uĉ0li of the EC is boosted over the
corresponding value for ĤIWI ¼ 0, which is set entirely by
t⊥. This order parameter also quantifies the ODLRO, since
CexðxÞ → A2 when x → ∞.
Experimental observables capture how the IW interac-

tion U⊥ dominates the 1D EC physics. Fundamentally, the
1D EC is not characterized by one gap, but by two, which
we label δ and Δ. The large gap Δ could be measured using
scanning tunneling microscopy, which probes the retarded
Green’s function

GR
wðx;ωÞ ¼ hĉxwðω − Ĥ þ EGS þ iηÞ−1ĉ†xwi

þ hĉ†xwðωþ Ĥ − EGS þ iηÞ−1ĉxwi:

An example is shown in Fig. 2(a). The weak coupling

perturbative renormalization group (PRG) predicts Δ∝
U1=ð2−2KaÞ⊥ (see the Supplemental Material [20] and
Ref. [21]), and is tied to the appearance of Coulomb drag
[22–24]. Numerically we find the PRG to be of limited
validity, with ΔðU⊥Þ actually interpolating between (at
least) two power laws in U⊥, where the position of the
crossover region depends on t⊥ (see the Supplemental
Material [20]).
Crucially, the DMRG reveals the dependence of Δ on t⊥

(which PRG cannot), shown in Fig. 2(b). Two regimes of
the 1D EC can be identified. At very small t⊥=t,Δ is almost
independent of t⊥. Here the physics is almost completely
dominated by electron-hole interactions and this is the
cleanest form of a 1D many-body EC. The other regime,
when t⊥=t > 0.005, has a significant dependence of Δ on
t⊥ and a noticeable decrease of the order parameter ratio in
Fig. 1(d), although that ratio still remains large if U⊥=t
is large.
The large gap Δ is present even when t⊥ ¼ 0 and there is

no EC. The small gap δ behaves differently. This gap can be
obtained from the first peak in the imaginary part of the IW
current susceptibility

χJ⊥ðωÞ ¼ hĴ⊥ðω − Ĥ þ EGS þ iηÞ−1Ĵ⊥i;

which is accessible via optical conductivity
measurements and is shown in Fig. 2(c). Here, Ĵ⊥ ¼
ði=MÞPM

x¼1 ðĉ†xuĉxl−H:c:Þ is the discretized operator for
the IW current. We can also find δ by computing the first
excited state above the ground state within the same
quantum number sector [19] and this gives matching
values. This gap only appears when t⊥ ≠ 0 and is key to

establishing the EC. The PRG predicts δ ∝ t2=ð4−KaþK−1
s Þ

⊥
at weak t⊥, and a locking of the phase of the symmetric
mode (see the Supplemental Material [20] and Ref. [21]).
However, PRG cannot characterize the order when both
t⊥ and U⊥ flow to strong coupling, or when the system
starts out at strong coupling. The limitations of PRG are
illustrated again by our finding that δðt⊥Þ is not a pure
power law, but consists of two such laws which cross
over into each other (see the Supplemental Material [20]).
Thus, we have used the DMRG to establish that the
ordered phase of this system has excitonic ODLRO and
the mutual enhancement of IW tunneling and interactions

FIG. 2. (a) Spectral function of GR
u ðx;ωÞ for the model system

with t⊥ ¼ 0.001t and U⊥ ¼ 2t, exhibiting the large gap Δ.
(b) Scaling of Δ with t⊥ for U⊥ ¼ 0.25t (dark blue line), U⊥ ¼
0.5t (bright red line), U⊥ ¼ 0.75t (yellow line), U⊥ ¼ t (violet
line) U⊥ ¼ 1.25t (green line), U⊥ ¼ 1.5t (light blue line), U⊥ ¼
2t (dark red line) for the model system. (c) Spectral function of
χJ⊥ðωÞ for the model system with t⊥ ¼ 0.001t and η ¼ 0.001t,
forU⊥ ¼ 2t (blue line),U⊥ ¼ 1.5t (green dotted line), andU⊥ ¼
t (red dash-dotted line). Weight below δ is entirely due to finite η.
(d) Scaling of δ with U⊥, for t⊥ ¼ 0.001t (dark blue line), t⊥ ¼
0.0025t (bright red line), t⊥ ¼ 0.005t (yellow line), t⊥ ¼ 0.01t
(violet line) t⊥ ¼ 0.025t (green line), t⊥ ¼ 0.05t (light blue line),
t⊥ ¼ 0.1t (dark red line) for the model system. (e) Order
parameter A as a fraction of its ground state value, against
inverse temperature β for the model system with U⊥ ¼ 2t,
t⊥ ¼ 0.01t. Once β > 1=δ, the system approaches ground state
properties exponentially fast in β. (f) dc I-V characteristic of the
model system with t ¼ 1 eV, U⊥ ¼ 2t, t⊥ ¼ 0.01t (blue), and
t⊥ ¼ 0.001t (red), showing both dissipationless and dissipative
regimes. All results are for M ¼ 96.
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which PRG cannot deliver. The numerics further reveal
that the EC order parameter A ∝ jIm½χJ⊥ðδÞ�jγ once U⊥
becomes the dominant energy scale, where γ is indepen-
dent of t⊥ (see the Supplemental Material [20]).
The gap δ sets the temperature below which the 1D

excitons will be very close to the EC ground state, as shown
by the condensate order parameter A in Fig. 2(e).
Computed quasiexactly using the DMRG from the full
thermal state e−βĤ via the purification approach [19], AðβÞ
includes both the energy and entropy contributions to the
free energy. We see that, even though it is very weak, the
IW tunneling explicitly circumvents the standard argument
of Landau and Lifshitz regarding the impossibility of an
ordered EC phase at finite temperature, and A in Fig. 2(e)
exhibits crossover behavior. This is analogous to the exact
solution for the magnetization of a 1D Ising chain: at zero
external magnetic field, no magnetized phase is possible at
finite temperature, but any finite external field will give rise
to a crossover behavior of magnetization with temperature
[25], exactly analogous to Fig. 2(e) for AðβÞ.
We calculate χJ⊥ðωÞ in the real frequency domain (using

the GMRES approach within the DMRG [26]) on the
isolated system. With no external bath to dissipate energy,
this approach cannot obtain dc IW current in response to
applying Ĵ⊥. Still, for an isolated system the existence of a
nondissipative dc interlayer supercurrent (which is the
hallmark property for using the EC state as a transistor
[6]) can be shown, as can the transition to a dissipative
regime beyond some critical current. Both regimes are
visible in Fig. 2(f), which shows I as a function of voltage
V ¼ 2πΓ=e, where Γ is the rate of macroscopic tunneling
from the original to the new ground state as IĴ⊥ is added to
Ĥ. We obtain Γ from the decay of occupation from the
original ground state through calculation of the imaginary
time Green’s function hGSje−τðĤþIĴÞjGSi ∝ e−τΓ using
time dependent DMRG. The result agrees very well with
the qualitative prediction of the singular relationship
I ∝ −ðlogVÞ−1.
Realistic experimental systems have long-range

Coulomb interactions, so now we demonstrate the robust-
ness of the EC beyond the model system we have
considered up to this point. We use a screened Coulomb
potential (3D coordinates x),

Uðjx − xjÞ ¼ e−jx−x0j=Λ

4πεeff jx − x0j ; ð1Þ

where εeff denotes the effective dielectric screening in
between points x and x0. We note that for 1D electrons
there is no intrinsic screening, a crucial advantage of
implementing 1D excitons compared to previous proposals
in 2D bilayers [12]. All screening in 1D derives from the
environment [16,17] and can thus be tuned. As shown in
Fig. 1(a), the dielectric constant of the substrate εsub could
be different from that of the spacer εsp if different materials

are chosen. For IW interactions εeff ¼ εsp and for intrawire
interactions εeff ¼ ðεsub þ εspÞ=2. The aim is to depress
intrawire repulsion as much as possible through large εsub,
while retaining strong IW repulsion through low εsp. The
particular form of the screening function in Eq. (1) is
secondary: what matters for us is to choose a screening that
(i) limits the Coulomb interaction and (ii) reproduces the
low energy properties of a realistic wire.
With this inmind, we consider a latticemodel of electrons

on two parallel chains, each with a lattice spacing 0.142 nm,
equal to the carbon-carbon bond of graphene and study two
scenarios. (i) Moderate screening. Choosing εsub ¼ 16ε0
(where ε0 is the vacuum permittivity), Λ ¼ 0.48 nm, and
t ¼ 0.25 eV, as explained in the Supplemental Material
[20], a single such wire realizes a system of strongly
correlated spinless electrons at a magnetic field of 0.06 T.
Its low energy properties are characterized by a Tomonaga-
Luttinger liquid parameter [18]K ¼ 0.66 (themodel system
had K ¼ 1), which is comparable to some experimentally
available nanowires. We place two such wires dIW ¼ 1 nm
apart with εsp ¼ ε0. Taking t⊥ ¼ 0.25 meV, we use the
DMRG to compute the ground state and find that it exhibits
ODLRO in Cex, that χJ⊥ yields a substantial δ=kB ¼ 88 K,
and that A=AIWI¼0 ¼ 5.4. For temperatures below δ, this
system will be very close to the EC ground state, having all
the 1D EC properties established earlier. (ii) Strong screen-
ing. Choosing εsub ¼ 200ε0, Λ ¼ 0.31 nm, a wire is much
closer to our initial model system than in the moderate
screening case. When dIW ¼ 0.75 nm and εsp ¼ ε0, the IW
interaction is larger than intrawire one.We consider systems
at t ¼ 0.4; 0.5; 1.0 eV, which can again be made spinless at
perpendicular magnetic fields of 9.4 T, 12 T, and 27.9 T,
respectively (see Supplemental Material [20]). The IW-
tunneling t⊥ is varied between 5 × 10−4t and 0.01t. As
shown in Fig. 3, this results in δ=kB of at least 87K, reaching
up to 301 K. As for the model system earlier, we encounter
both the regimes where δ depends weakly on t⊥, crossing
over into one where single particle physics becomes more
noticeable. In the inset of Fig. 3 we indicate the range of the

FIG. 3. Achievable gap δ=kB in the strong screening case as a
function of t⊥ for t ¼ 1 eV (green line), t ¼ 0.5 eV (red line),
and t ¼ 0.4; eV (blue line). Inset: Range of achievable A=AIWI¼0,
indicated by showing high and low values as a function of t⊥,
with colors matching the main figure.
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corresponding A=AIWI¼0 by showing one high and one low
value for each t. For small values of t⊥we see themany-body
physics being clearly dominant. We find that Uu and Ul
should not be too different fromUul in overall magnitude. If
intrawire interactions aremuch stronger than IWones, all EC
properties are depressed. In the opposite regime, where IW
interactions dominate, the electrons phase separate at large
μdiff . As a result, we find different minimal filling fractions
for the electrons in the upper wire (low filling aids pairing)
For (i) this is 0.135, in (ii) it is 0.27 at t ¼ 0.4 eV, 0.208 at
t ¼ 0.5 eV, and 0.113 at t ¼ 1 eV.
In conclusion, we have demonstrated that single particle

tunneling between spinless electron and hole wires removes
the restrictions of the MW theorem and allows for a true
bilayer EC in one dimension characterized by ODLRO and
a global phase.

Calculations were performed using the redeveloped
DMRG module of ALPS [27] and the Matrix Product
Toolkit [28]. We thank Nordita for support. A. K. thanks
Thierry Giamarchi for helpful discussions. D. S. L. A.
thanks ERC Project No. DM-321031 for financial support.
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