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Chaotic size dependence makes it extremely difficult to take the thermodynamic limit in disordered
systems. Instead, the metastate, which is a distribution over thermodynamic states, might have a smooth
limit. So far, studies of the metastate have been mostly mathematical. We present a numerical construction
of the metastate for the d ¼ 3 Ising spin glass. We work in equilibrium, below the critical temperature.
Leveraging recent rigorous results, our numerical analysis gives evidence for a dispersed metastate,
supported on many thermodynamic states.
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Introduction.—Symmetry breaking and phase transitions
are well defined for systems of infinite size, L ¼ ∞.
Indeed, L ¼ ∞ states can be defined rigorously as
Dobrushin-Lanford-Ruelle (DLR) states [1]. However,
experiments are conducted on systems of very large, but
finite size. Therefore, one would like to interpret DLR
states as the L → ∞ limit of states defined on a sequence of
systems of growing size. Indeed, for simple systems, e.g.,
ferromagnets, we know how to approach DLR states with
finite-L states by using suitable boundary conditions. Yet,
for disordered systems [2,3], the connection between DLR
and finite-L states is still much of a mystery [4], most
particularly for spin glasses [5–9].
For the sake of concreteness, let us consider the standard

model for spin glasses, the Edwars-Anderson (EA) model
[10] in spatial dimension d. Ising spins si ¼ �1, located in
a size L cube, ΛL ⊂ Zd (see Fig. 1), interact through a
nearest neighbor, bond disordered, and strongly frustrated
Hamiltonian,

HJ ;LðsÞ ¼ −
X
hi;ji

Jijsisj: ð1Þ

The quenched couplings Jij are independent and identically
distributed randomvariables (Jij ¼ �1with50%probability,
in our case).We callJ ≡ fJijg a disorder sample. The finite-
L Gibbs state ΓJ ;LðsÞ ¼ exp½−HJ ;LðsÞ=T�=ZJ ;L is a ran-
dom state, as it depends on the set of random couplings J .
The problem in taking the large L limit for spin glasses

defined by Eq. (1) is caused by their chaotic size depend-
ence. Take a fixed, arbitrary yet finite region (e.g., the
measuring window ΛW in Fig. 1). The Gibbs measure over

ΛW changes chaotically when the system grows by the
addition of new couplings at the boundaries, while keeping
previous couplings unaltered. This extreme sensibility to
changes at the boundaries motivated the invention of the
metastate [5], a probability distribution over states with a
(hopefully) smoother L → ∞ limit.
The twomainmetastate definitions are those ofAizenman

and Wehr (AW) [4] and Newman and Stein [5]. We focus
on the former (the two definitions are conjectured to be
equivalent [6], but that of AW is easier to implement
numerically). The lattice ΛL in Fig. 1 is divided into an
inner regionΛR, a cube of linear sizeR, and an outer region.
Consequently we call internal couplings the set I ≡
fJijji; j ∈ ΛRg and outer couplingsO ¼ J nI . We proceed
by (i) restricting our attention to the measuring window
ΛW of linear size W [9], (ii) taking the average over the
outer couplings, with fixed internal couplings, and
(iii) sending to infinity all three length scales while respect-
ing W ≪ R ≪ L. If the limit of a translation invariant
quantity exists (which is yet to be proven), it is independent
of the arbitrary choice for the fixed internal couplings [11].

FIG. 1. Sketch of the AW metastate construction.
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Yet, even if at a considerably lesser level of mathematical
rigor, we must recall that there has been some progress in
the study of spin glasses. We have numerical [12,13] and
experimental [14] evidences for the existence of a phase
transition to a spin-glass phase at low temperatures in
d ¼ 3, at least in the absence of an external magnetic field.
We also have two major theoretical frameworks that
are applied to interpret experiments and simulations: the
replica symmetry breaking (RSB) theory [15,16] and the
droplet model [17–19]. Which (if any) of these two theories
captures the nature of the spin-glass phase in d ¼ 3 is being
debated [20].
In fact, a recent mathematical tour de force [21–23] has

shown that the RSB theory provides the exact solution to
the d ¼ ∞ Sherrington-Kirkpatrick model [24]. The
common lore expects RSB to be also valid above and at
the upper critical dimension dU ¼ 6. RSB theory extends
as well to d < dU features found in the mean field solution
[25]: many states (infinitely many in the L → ∞ limit),
hierarchically organized, contribute to the Gibbs measure,
each one with a weight that depends on the disorder
realization. Consequences include the existence of the de
Almeida-Thouless line [26] (the spin-glass phase transition
survives in the presence of a small external magnetic field
[27]), or the strong sample-to-sample fluctuations induced
by the nonself-averageness of several measurable quantities
[28] (these observations [27,28] were, however, obtained
by simulating systems of finite size).
The alternative droplet model provides a much simpler

scenario for the spin-glass phase, where the Gibbs measure
is a mixture of two spin-flip related pure states. It follows
that the spin-glass phase transition should disappear when a
magnetic field is applied [the field breaks the global spin-
flip symmetry HðsÞ ¼ Hð−sÞ in Eq. (1)].
The most recent mathematical analysis, based on meta-

states, has critically assessed both the RSB theory and the
droplet model. Currently, we have three mathematically
consistent pictures for the spin-glass phase. First, the droplet
model metastate is concentrated on a single trivial state (let
us call trivial a state that is a mixture of two pure states
related by the global spin-flip symmetry). Second, we have
the chaotic pairs picture [5,7], predicting a disperse metastate
(there is a large number of states to choose from), yet each
state is trivial. This nontrivial metastate is due to chaotic size
dependence: by gradually increasing L, one obtains vastly
different states. Finally, the RSBmetastate [9] is disperse and
every state drawn from it contains the Parisi hierarchical tree
of pure states. Alternatives to these three pictures are much
limited by recent rigorous results [29].
Read argues [9] that one can partially discriminate

between these competing pictures for the metastate by
studying the decay of a particular correlation function
averaged over the metastate, CρðxÞ ∼ 1=jxjd−ζ for large
distances jxj; see Eq. (2). An exponent value ζ < d implies
a disperse metastate, thus ruling out the droplet model’s

metastate. Furthermore, in the context of the RSB meta-
state, the number of pure states that can be resolved by
studying a region of size W is exponentially large in Wd−ζ.
To the best of our knowledge there has been only one

numerical attempt to study the metastate, by means of a
nonequilibrium simulation [30]. Yet, the main debated
points regard the equilibrium metastate. In fact, the only
related issue addressed numerically by equilibrium simu-
lations has been nonself-averageness [20,28,31–33].
Here we show that a numerical construction of the

Aizenman and Wehr metastate for the Edwards-
Anderson model in d ¼ 3 is possible in present-day
computers. Our construction makes precise several hints
by Read [9]. In particular, recall Fig. 1, we show how big
the ratios of length scales L=R, R=W need to be to uncover
metastate properties. We also study the dependence on the
fixed internal couplings, a crucial issue that has not yet
been addressed quantitatively. We make quantitative com-
putations of overlap distributions and correlation functions
averaged over the AW metastate, thus computing the
crucial ζ exponent. We find a value definitively smaller
than d ¼ 3, which rules out the droplet model metastate
and leaves the chaotic pairs and the RSB metastates as the
remaining contenders.
Metastate averages and the Metastate-averaged state.—

In the context depicted by Fig. 1, we consider model (1)
endowed with periodic boundary conditions (which makes
irrelevant the location of ΛR in ΛL). Let us consider the
probability distribution of ΓJ ;L at fixed internal disorder I,
while sending L → ∞ and averaging over the outer
disorder O,

κI ;RðΓÞ ¼ lim
L→∞

EO½δðFÞðΓ − ΓJ ;LÞ�

If the limit κðΓÞ ¼ limR→∞κI ;RðΓÞ exists, it no longer
depends on the internal disorder I and provides the AW
metastate. The purpose of the measuring window ΛW in
Fig. 1 is avoiding boundary effects that may appear as long
as R is finite. Any measure is taken only inside ΛW , while
bonds are fixed in ΛR in the metastate definition.
We have two kinds of averages, thermal averages over

the Gibbs state h� � �iΓ and averages over the metastate
½� � ��κ, that can be combined in different ways. For example,
the metastate-averaged state (MAS) ρðsÞ is defined via the
average h� � �iρ ≡ ½h� � �iΓ�κ.
As seen from the measuring window ΛW, a state ΓðsÞ is a

set of probabilities fpαgα¼1;…;2W
d over the spin configura-

tions in ΛW . In other words, it is a point on the hyperplane
defined by the equation

P
αpα ¼ 1, pα ≥ 0. In this sense,

the metastate is a probability distribution over this hyper-
plane. The MAS ρðsÞ is the average of this distribution, and
it is itself a point on the hyperplane (hence, the MAS is a
state itself).
The numerical construction of the metastate.—We

simulate the EA model (8 ≤ L ≤ 24) sampling spin
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configurations at equilibrium by a combination of
Metropolis single spin-flip Monte Carlo simulations and
parallel tempering [34]. All the data shown are measured at
the lowest simulated temperature T ¼ 0.698≃ 0.64Tc,
well below the critical temperature Tc ¼ 1.102ð3Þ [35].
Equilibration was assessed on a sample-by-sample basis
[36] and, for the largest systems, it required the use of
multisite multispin coding [37] (see [38] for details).
We repeat the computation for NI ¼ 10 different

internal couplings I samples (indexed by 0 ≤ i < NI )
and, for each of these, we use NO ¼ 1280 different outer
disorder O realizations (indexed by 0 ≤ o < NO) Thus we
have a total of NJ ¼ 12800 samples and, for each sample
J ¼ I∪O, we simulate m ¼ 4 distinct real replicas.
We takeNI ≪ NO because we expect all inner disorder

samples to be “typical” [9] when computing metastate
averages at R ≫ 1. We found however sizable sample-to-
sample fluctuations for the system sizes we consider.
The average over the Gibbs state h� � �iΓ is estimated via

Monte Carlo thermal averages h� � �i at fixed disorder J ,
i.e., for given indices i and o. The average over the
metastate is given by ½� � ��κ ¼

P
oð� � �Þ=NO, and the one

over the internal disorder by ð� � �Þ ¼ P
ið� � �Þ=NI. For

example, the MAS spin correlation function is given by

CρðxÞ ¼ ½hs0sxiΓ�2κ ¼
1

NI

X
i

�
1

NO

X
o
hsi;o0 si;ox i

�
2

¼ 1

NI

X
i

1

N 2
O

X
o;o0

hsi;o0 si;ox si;o
0

0 si;o
0

x i ∼ jxj−ðd−ζÞ; ð2Þ

defining Read’s ζ exponent for jxj ≫ 1.
We measure in ΛW the overlaps between any two real

replicas, let us call them σ and τ, sharing the same internal
disorder (indexed by i) and having external couplings
indexed by o and o0,

qi;o;o0 ≡ 1

W3

X
x∈ΛW

σi;ox τi;o
0

x : ð3Þ

Actually, for each fi; o; o0g, we have mðm − 1Þ=2 contri-
butions from different pairs of real replicas if o ¼ o0 andm2

otherwise.
The main objects of our numerical study are the

probability density functions (PDF) of the overlaps,

PðqÞ ¼
P

iPiðqÞ
NI

; PiðqÞ ¼
1

NO

X
o

hδðq − qi;o;oÞi;

PρðqÞ ¼
P

iPρ;iðqÞ
NI

; Pρ;iðqÞ ¼
1

N 2
O

X
o;o0

hδðq − qi;o;o0 Þi:

While PðqÞ is the usual PDF already measured in many
numerical simulation of spin glasses, PρðqÞ is the PDF of
the overlap over the MAS. Although PρðqÞ → δðqÞ for
W → ∞ [9], the scaling of its variance is informative,

χρ ¼
X
x∈ΛW

CρðxÞ ¼ Wd

Z
q2PρðqÞdq ∼Wζ: ð4Þ

Numerical results.—Taking the limit of large L in
simulations actually amounts to asking how small the
ratios R=L and W=R need to be, in order to find results
that are safe (to a given accuracy).
In Fig. 2 (main plot) we see that the MAS PρðqÞ

measured with R ¼ 12 and both L ¼ 24 and L ¼ 16 are
statistically compatible, suggesting that R=L ¼ 3=4 is
already a safe choice. The error bars are rather large,
because the dependence of Pρ;iðqÞ on the internal disorder
sample is unexpectedly strong for the values ofW and Rwe
are using (as shown by the insets in Fig. 2).
A similar check can be performed with the MAS

susceptibility χρ (see Fig. 3). In the inset we see that,
fixing R ¼ 12, all data with R=L ≤ 3=4 are statistical
compatible, while data with R=L ¼ 6=7 show significant
deviations even for small W values. Hereafter we safely
fix R ¼ L=2.
The main panel of Fig. 3 shows data for the MAS

susceptibility χρ measured with the safe ratio R ¼ L=2
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(which is statistically equivalent to the limiting condition
R ≪ L) and different ratios W=R. Data have been rescaled
according to the following scaling law,

χρðW;RÞ ¼ RζfðW=RÞ ¼ WζgðW=RÞ; ð5Þ

which is compatible with Eq. (4) if fðxÞ ∝ xζ for x ≪ 1 and
gð0Þ ¼ const. First of all we note that the physical behavior
we would like to measure in the limit W=R ≪ 1 actually
extends up to W=R ≈ 0.75, where corrections to the
asymptotic power law appear. Fitting data with W=R <
0.75 we estimate Read’s exponent ζ ¼ 2.3� 0.3 (we have
not found any evidence of size corrections in the compu-
tation of ζ [39]).
Finally we show in Fig. 4 the size dependence of

both PρðqÞ and PðqÞ, for L ¼ 24 (the largest simulated),
R ¼ L=2, and varying W. For a dispersed metastate in the
thermodynamic limit the two distributions are different.
Discussion and conclusions.—We have shown that state-

of-the-art numerical simulations of spin glasses in d ¼ 3
allow for the construction of the AW metastate. Numerical
data suggest that the limiting conditions 1 ≪ W ≪ R ≪ L
can be relaxed to W=R, R=L ≈ 3=4 without changing
substantially the thermodynamic physical behavior. This
is unexpected very good news.
From the numerical construction of the AWmetastate we

have obtained quantitative information on the nature of the
spin-glass phase in d ¼ 3. The metastate average overlap
distribution PðqÞ and the MAS PρðqÞ are significantly
distinct objects already at moderate sizes. We cannot
extrapolate safely to the thermodynamic limit, and sample-
to-sample fluctuations are still important at the accessible
system sizes. Nevertheless we have found a convincing
scaling law for the MAS susceptibility, and an estimate of
ζðd ¼ 3Þ ¼ 2.3ð3Þ, strongly suggesting ζ < d.
Read’s exponent ζ is related to the number of different

states that can be measured in a system of size W as
log nstates ∼Wd−ζ [9]. Such a number diverges in the
thermodynamic limit as long as ζ < d, supporting the
picture of a metastate with infinitely many states. In Fig. 5
we summarize our knowledge about the ζ exponent. At
and above the upper critical dimension dU ¼ 6, where
mean field exponents are correct, ζ ¼ 4 [44,45]. Assuming
ζðdÞ is a continuous and monotonically nondecreasing
function, the inequality ζ < d still holds slightly below dU.

In the present work we find ζðd ¼ 3Þ ¼ 2.3ð3Þ (blue
point in Fig. 5). An alternative estimate of the ζ exponent
comes from the decay of the four-spins spatial corre-
lation function conditional to the q ¼ 0 sector,

C4ðxÞ¼½hσi;o0 τi;o0 σi;ox τi;ox iΓjqi;o;o¼0�κ∼ jxj−ðd−ζq¼0Þ for jxj ≫ 1:
ζq¼0ðd ¼ 3Þ ¼ 2.62ð2Þ [36,46,47] and ζq¼0ðd ¼ 4Þ ¼
2.97ð2Þ [48]. Read conjectured that ζq¼0 ¼ ζ [9]. These
estimates are shown by red points in Fig. 5 [49]. A gentle
interpolation of the ζ estimates (dashed line in Fig. 5) seems
to meet the ζ ¼ d condition very close to the current best
estimate for the lower critical dimension dL ≈ 2.5 [50].
In conclusion, all the numerical evidences strongly

support the existence of a spin-glass metastate dispersed
over infinitely many states for d ¼ 3 (and probably down to
the lower critical dimension). These findings are incom-
patible with the droplet model, while they are compatible
with both the chaotic pair picture and the replica symmetry
breaking scenario.
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