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We study the ac anomalous Hall conductivity σxyðωÞ of a Weyl semimetal with broken time-reversal
symmetry. Even in the absence of free carriers these materials exhibit a “universal” anomalous Hall
response determined solely by the locations of the Weyl nodes. We show that the free carriers, which are
generically present in an undoped Weyl semimetal, give an additional contribution to the ac Hall
conductivity. We elucidate the phy146sical mechanism of the effect and develop a microscopic theory of
the free carrier contribution to σxyðωÞ. The latter can be expressed in terms of a small number of parameters
(the electron velocity matrix, the Fermi energy μ, and the “tilt” of the Weyl cone). The resulting σxyðωÞ has
resonant features at ω ∼ 2μ which may be used to separate the free carrier response from the filled-band
response using, for example, Kerr effect measurements. This may serve as a diagnostic tool to characterize
the doping of individual valleys.
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Weyl semimetals (WSMs) are topologically nontrivial
conductors in which the spin-nondegenerate valence and
conduction bands touch at isolated points in the Brillouin
zone, the so called “Weyl nodes” [1–10]. The electron
spectrum near the nodes is described by the chiral Weyl
Hamiltonian, see Eq. (3) below. The nodes occur in pairs of
opposite chirality [11]. The WSM phase requires either
time-reversal (TR) or inversion symmetry (or both) to be
broken [12]. Recently, experimental evidence for the WSM
phase was reported in noncentrosymmetric TaAs [13–18]
and a range of other inversion-symmetry-breaking materi-
als [19–24]. TR-breaking WSMs have not been found yet
but there are several promising candidates [25–28].
In the situation where the touching valence (conduction)

bands are completely filled (empty), such TR-breaking
WSMs were shown to exhibit an anomalous Hall effect
(AHE) [4,29,30] that is “universal” in the sense that it only
depends on the location of the nodes in the BZ. The theory
of this contribution, below referred to as σðbandÞxy ðωÞ, was
extended to the ac regime [31].
However, in a generic WSM, including all presently

discovered ones, free carriers of both the electron and hole
type are present, see Fig. 1. In this work we develop a
microscopic theory of the ac anomalous Hall effect in a
generic WSM. We show that the free carriers present near
the nodal points provide a distinct contribution to the
anomalous Hall conductivity σðfreeÞxy ðωÞ.
This free carrier contribution has a resonant structure at

frequencies on the scale of the Fermi energy of the free
carriers. This feature should manifest itself in the spectrum
of the magneto-optical Kerr effect and may find application
as a diagnostic tool for the materials characterization
of WSMs.

In order to separate the free carrier contribution from that
of the filled bands (see Fig. 1),

σαβðωÞ ¼ σðbandÞαβ ðωÞ þ σðfreeÞαβ ðωÞ; ð1Þ

we note that in the optical response the external electric
field couples only electron states with equal quasimomen-
tum. As a result the Kubo formula for the optical conduc-
tivity may be expressed as a sum over quasimomenta,

σðfreeÞαβ ðωÞ ¼
X
p

σαβðω; pÞ½nþðpÞ − n−ðpÞ þ 1�; ð2Þ

where n�ðpÞ denotes the Fermi occupation function in the
conduction or valence band, and by σαβðω; pÞ we denote
the matrix elements and energy denominators. The filled

band contribution in Eq. (1) has the form σðbandÞαβ ðωÞ ¼P
pσαβðω; pÞ × ð−1Þ.

FIG. 1. Projection of a generic band structure with Weyl points
close to the chemical potential. Free carriers are localized to
electron (green) or hole (red) pockets near the Weyl nodes.
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Below we focus on the free carrier contribution,

σðfreeÞαβ ðωÞ in Eq. (2). Since the occupation factor in this
term, ½nþðpÞ − n−ðpÞ þ 1�, is nonzero only close to the

Weyl nodes, σðfreeÞαβ ðωÞ may be written as a sum of partial

contributions of individual Weyl nodes σðnÞαβ ðωÞ, see Eqs. (8)
and (9) below. The latter may be expressed in terms of
the Fermi energy in the node, μ, and the parameters of the
Weyl Hamiltonian describing the electron dynamics near
the node,

HðpÞ ¼ u · pσ0 þ vijpiσj: ð3Þ
Here, σμ are the Pauli matrices, the velocity matrix vij is
real symmetric, and the velocity u describes the tilt of the
energy cone [32]. The index n labeling the nodes has been
omitted in these expressions. The corresponding energy

spectrum E�ðpÞ¼u ·p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jðvijpiÞ2
q

is shown in Fig. 2.

Before proceeding with a quantitative consideration we
discuss qualitatively the physical origin of the nonvanish-
ing anomalous Hall response σðfreeÞxy ðωÞ. First, we note that a
finite Hall conductivity of an individual Weyl node is
allowed by symmetry. It corresponds to the antisymmetric
part of the conductivity tensor, σαβ, and is proportional to
εαβγuγ . Here, the tilt velocity u breaks the time-reversal
symmetry of a given node, and the Levi-Civita tensor εαβγ is
provided by the chirality of the Weyl node [which is given
by χ ¼ sgnðdet vÞ]. Although the above argument applies
to both time-reversal invariant and noninvariant WSMs in
the former the Hall contributions of Weyl nodes related by
TR symmetry cancel each other. Indeed, the Hamiltonian of

a TR partner may be obtained from Eq. (3) by making the
substitution u → −u. This does not change the chirality of
the node but changes the sign of the Hall response. In TR-
breaking WSMs such a cancellation does not occur and the
Hall responses of individual nodes do not sum up to zero.
Similarly, the responses of nodes linked by inversion
symmetry generally add up as both u and χ change sign.
It is useful to see how a nonvanishing free carrier Hall

response arises in the framework of Eq. (2). Note that tilting
the energy dispersion by u amounts to a mere energy shift
of the two-state system defined at each p and thus affects
neither the matrix elements nor the energy denominators;
i.e., σαβðω; pÞ is independent of the tilt. In the absence of u
the only vector breaking time-reversal symmetry is the
momentum p. Thus by the Onsager symmetry principle,
σαβðω; pÞ ¼ σβαðω;−pÞ, the Hall response must be odd in
p. It might seem that upon the integration over momentum
this would give a vanishing result [33]; however, this is not
the case. The occupation factor in Eq. (2) depends on the tilt
velocity u, which makes it asymmetric in p, see Fig. 2. As a
result the momentum sum in Eq. (2) is nonzero. Physically,
the nonvanishing Hall response of free carriers arises due to
asymmetric in p Pauli blocking of the filled band response.
In a similar fashion asymmetric blocking leads to photo-
currents in WSMs [34].
Note that the occupation factor is asymmetric in p if and

only if the node is tilted and the Fermi energy does not lie
exactly at the nodal point. It is asymmetric in the region of
momenta p ∈ ½pmin; pmax� with pmin =max ¼ jμj=vfð1� UÞ
(here U is the magnitude of the tilt velocity in units of the
Fermi velocity and for simplicity vij ¼ χvfδij).
Let us now proceed with a quantitative consideration.

For brevity we set ℏ ¼ c ¼ 1 in intermediate steps. The
Kubo formula relates the optical conductivity to the
retarded current-current correlation function

σαβðωÞ ¼
i
ω
ΠRet

αβ ðωÞ: ð4Þ

The retarded correlator ΠRet
αβ ðωÞ is obtained from the

Matsubara current-current correlation function

ΠαβðiωnÞ ¼
T
V

X
m;p

tr½jαGðiϵm þ iωn; pÞjβGðiϵm; pÞ� ð5Þ

by analytic continuation to real frequencies, iωn → ωþ
i0 ¼ ωþ. In Eq. (5) T denotes temperature, V denotes
volume, and the trace is taken over the spinor indices. The
Matsubara Green function corresponding to Hamiltonian
(3) is

Gðiϵn; pÞ ¼
ðiϵn − u · pÞσ0 þ vijpiσj
½iϵn − EþðpÞ�½iϵn − E−ðpÞ�

; ð6Þ

and the current operator is given by

FIG. 2. Projection of the dispersion close to a generic Weyl
node for u∥p̂z and vij ¼ vfδij. The Fermi surface forms an
ellipse centered away from the nodal point. The occupation factor
½nþðpÞ − n−ðpÞ þ 1� is nonzero whenever transitions at a given
momentum are blocked. It is asymmetric in p for pmin < p <
pmax (above pmax all transitions are allowed, below pmin all are
blocked). Frequencies ωmin < ω < ωmax correspond to transi-
tions for which only part of the spectrum is Pauli blocked.
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jα ¼ −
δ

δAα
Hðp − eAÞ ¼ eðuασ0 þ vαjσjÞ: ð7Þ

To simplify the notation we rescale momenta, lj ¼ vijpi,
and the tilt velocity, χUi ¼ v−1ij uj, where we have factored
out the chirality in order to consider the effect of tilt and
chirality separately. Performing the frequency summation
in Eq. (5) and subtracting the filled band contribution as
explained above, we obtain the free carrier contribution to
the conductivity from an individual node,

σðnÞαβ ðωÞ ¼
X
l

σðnÞαβ ðω; lÞ½nðnÞþ ðlÞ − nðnÞ− ðlÞ þ 1�: ð8Þ

In this expression nðnÞ� ðlÞ ¼ nfðχl · U � l − μÞ and

σðnÞαβ ðω; lÞ ¼
1

V

2ie2vαivβj
j det vj

2l2δij − 2lilj þ iωþεijklk
ωlð4l2 − ω2þÞ

; ð9Þ

where the sum now is over rescaled momenta l. The
symmetry arguments discussed above are manifest in this
expression: the Hall (antisymmetric in αβ) response
arises from the term ∝ εijk, and exists only if U is nonzero,
since otherwise the occupation factor is symmetric under
lk → −lk. Changing l → χl we observe that only the
antisymmetric term is sensitive to the chirality of the node.
The same applies to the change of sign of the tilt velocity.
Moreover, we see that the Hall response arises even for the
isotropic velocity matrix vij ∝ δij; the anisotropy of vij
merely amounts to anisotropic rescaling. Therefore, the
contribution of valley n to the optical conductivity tensor
may be expressed in the form

σðnÞαβ ðωÞ ¼
vαi
vf

~σðnÞij ðωÞ vjβ
vf

; ð10Þ

where v3f ¼ j det vj and ~σðnÞij ðωÞ is the response correspond-
ing to the isotropic case, vij ¼ χvfδij. It is useful to note
that after rescaling U is the only available vector breaking
rotational invariance in the single-node problem. This
allows us to express the components of ~σ in terms of
universal functions fðnÞ depending only on the parameters
of node n such that

~σðn;HallÞij ðωÞ ¼ εijkÛkf
ðnÞ
HallðωÞ; ð11aÞ

~σðn;⊥Þ
ij ðωÞ ¼ ðδij − ÛiÛjÞfðnÞþ ðωÞ; ð11bÞ

~σðn;∥Þij ðωÞ ¼ ÛiÛjfðnÞ− ðωÞ; ð11cÞ

where Û ¼ U=U;U ¼ jUj. We assume U < 1, i.e., only
consider type-I WSMs [35]. As we wish to obtain closed
form solutions we take the zero temperature limit. For

details of the calculation see the Supplemental Material
[37]. Restoring ℏ we obtain for the frequency dependence
of the free carrier conductivity of an individual node n

fðnÞHallðωÞ ¼
−χsgnðμÞe2
16π2ℏvfU2

×

�
jμjðL1 þ 2UÞ þ

�
1 −U2

4
ωþ jμj2

ω

�
L2

�

ð12Þ
and

fðnÞ� ðωÞ ¼ ie2

16π2ℏvfU3

�jμj2a�
ω

�
4Uð2þ a�U2Þ
3ð1 − U2Þ þ L1

�

þ ω

�
U3

3
L3 þ a�

�
1

12
� U2

4

�
L1

�

þ a�

�
ð1�U2Þ jμj

2
þ 2jμj3
3ωωþ

�
L2

�
: ð13Þ

In Eqs. (12) and (13) we introduced the notation a� ¼
−1=2� 3=2 and

L1 ¼ ln
ω2
min − ω2þ

ω2
max − ω2þ

; ð14aÞ

L2 ¼ ln
ðωþ þ ωminÞðωþ − ωmaxÞ
ðωþ − ωminÞðωþ þ ωmaxÞ

; ð14bÞ

L3 ¼ ln
ω2
min − ω2þ
−ω2þ

þ ln
ω2
max − ω2þ
−ω2þ

; ð14cÞ

and also ωmin =max ¼ 2jμj=ð1� UÞ for the limiting frequen-
cies of partially blocked transitions, cf. Fig. 2.
Equations (10)–(14) are the central results of this Letter

[38]. In particular Eq. (12) gives the frequency dependence
of the free carrier contribution to the AHE, which is
depicted in Fig. 3. The imaginary part arises from real
optical transitions that are asymmetrically Pauli blocked. It
exists only in the frequency interval ωmin < ω < ωmax. The
real part exhibits a resonant structure at frequencies
�ωmin =max. The red and dot-dashed graph shows the
imaginary part of the free carrier Hall conductivity in a
four node system given by the sum of individual node
contributions.
A nonzero ac Hall conductivity gives rise to the Kerr

effect. It can be shown that the contribution of surface arc
states is small in v=c [39]. As a result the Kerr effect is
described by the bulk optical conductivity. In particular, in
the polar Kerr effect geometry the angle of rotation of the
polarization plane of reflected light is given by [40]

θðωÞ ¼ Im

�
4πσxyðωÞ

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵxxðωÞ

p ðϵxxðωÞ − 1Þ

�
: ð15Þ
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Below we discuss the implications of our results for the
Kerr effect. For simplicity we assume the nodes to be
isotropic, vðnÞij ¼ χðnÞvnδij, and all tilts to lie along the z
axis. Then, the full Hall conductivity that enters the Kerr

response is σxyðωÞ ¼ σðuÞxy þP
nσ

ðnÞ
xy ðωÞ with σðnÞxy ðωÞ given

by Eqs. (10) to (12). Note that the frequency dependence
of the band contribution has been neglected and only the

dc universal component σðuÞxy ¼ e2K=2πh was kept, where
K is the effective distance of nodes in momentum space
(see Refs. [4,29] for details). This step is justified in the
Supplemental Material [37]. The permittivity entering
Eq. (15) is

ϵxxðωÞ ¼ ϵðbandÞxx ðωÞ þ 4πi
ω

X
nodesn

σðnÞxx ðωÞ ð16Þ

with longitudinal free carrier conductivity of an individual
node given by Eqs. (10) to (13).
Because of the gapless character of the electron spectrum

the filled band contribution to the permittivity ϵðbandÞxx ðωÞ
has a logarithmic frequency dependence at low frequencies
of interest. Since this dependence arises from the low
energy electron excitations described by the Weyl
Hamiltonian (3) it may be described in terms of the
parameters of the Weyl nodes. A consideration similar to
that of the free carrier contribution yields for isotropic
valleys with Fermi velocities vn

ϵðbandÞxx ðωÞ ¼ ϵ∞ þ e2

6πℏ

X
nodesn

1

vn
ln

Λ2

−ω2þ
: ð17Þ

The frequency cutoff Λ can be absorbed in the permittivity
of inert bands ϵ∞. For details see the Supplemental
Material [37].
Figure 4 shows a characteristic Kerr spectrum for a

WSMwith four nodes. The presence of free carriers at node
n leads to resonances in the Kerr angle which are (skewly)
centered around ω ¼ 2μn with width Unμn=ð1 −U2

nÞ. The
sign of the peaks is given by the product of the chirality, the
projection of the tilt along êz, and the sign of the chemical
potential. The peak at low frequencies occurs at the plasmon
frequency ωp that corresponds to vanishing permittivity. If
the plasmon frequency becomes larger than the character-
istic frequencies ω ∼ 2μ of the free carrier AH response,
resonances at these frequencies should still occur but might
be altered in shape. As is clear from the graphs, the universal
contribution to the AHE merely modifies the shape of the
resonant features in the frequency dependence of the Kerr
angle, while their locations are determined purely by the free
carrier contribution. This allows us to experimentally
determine the doping level of individual valleys.
Note that extrapolation of our result for fðnÞHallðωÞ to the dc

limit ω → 0 gives a finite result: assuming isotropy and
u∥êz,

σðnÞxy ð0Þ ¼ fðnÞHallð0Þ ¼
−χe2μ
8π2ℏvf

�
2

U
þ 1

U2
ln

�
1 − U
1þU

��
:

This result is purely formal, as in the presence of impurities
our results only apply in the collisionless regime ωτ ≫ 1,

FIG. 3. Frequency dependence of the free carrier AH conduc-
tivity for a single node with U ¼ 0.2 and μ ¼ vf ¼ 1. The
imaginary part (solid orange) is nonzero only in the intervals
ωmin < ω < ωmax. The width of this region is determined by the
tilt and chemical potential. The dot-dashed red graph shows the
response of a system of four nodes with μ ¼ ð0.5; 0.9; 1;−1.4Þ
and tilts U ¼ ð0.3; 0.05; 0.2; 0.05Þ. The nodes with μ ¼ 0.9, 1.4
have χ ¼ −1. Here, charge neutrality was ignored for simplicity.

FIG. 4. Kerr spectra for a generic TR broken system of four
nodes not related by symmetry. Charge neutrality is enforced.
The AH response is modeled using the free carrier contribution
plus the dc universal contribution σðuÞxy ¼ e2K=2πh. We used
parameters ϵ∞ ¼ 5 and α0 ¼ e2=ℏvf ¼ 1. Each node contributes
a peak to the spectrum. The features at low frequency are due to
the plasmon mode. As long as ωp < ωmin for the lowest lying free
carrier resonance and the universal component is small, the free
carrier features are mostly determined by the imaginary part of

the Hall conductivity. A large σðuÞxy suppresses the peaks but kinks
remain at ω ¼ ωmin =max.

PRL 119, 036601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

036601-4



where τ is the transport mean free time. Nevertheless, in the
dc regime ωτ ≪ 1 the free carrier contribution to the AHE
should remain finite. For high mobility conductors it is
expected to be dominated by skew scattering of Weyl
fermions and may be estimated as

σðn;skÞxy ∝ χ
τ2

τsk

e2μ2ηðUÞ
ℏ2vf

:

Here, 1=τsk is the skew scattering rate. Note that skew
scattering is allowed by symmetry. For example, chirality
allows us to write the intranode skew scattering cross section
in the form wkk0 ∝ u · ðk × k0Þ. It arises only beyond the
lowest Born approximation for the scattering amplitude. In
this respect it is worth noting that in Ref. [33] the effects of
the energy cone tilt on Pauli blocking and impurity skew
scattering were not considered. This resulted in a vanishing
free carrier contribution to the anomalous Hall conductivity.
In conclusion, we note that the developed microscopic

theory of ac anomalous Hall conductivity, and its impli-
cations for the magneto-optical Kerr effect, apply not only
to WSMs with spontaneously broken TR symmetry, but are
also relevant for systems in which the WSM phase is
“created” [41] by application of a magnetic field to TR-
invariant Dirac semimetals. We would also like to note that
the diagonal components of the conductivity tensor have
features at ω ∼ 2μ. Thus, in TR-invariant Weyl semimetals
the doping levels of individual valleys may be characterized
by measuring the frequency dependence of the surface
impedance.
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