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We reveal the existence of continuous families of guided single-mode solitons in planar waveguides
with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized
solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of
conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points,
which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity
may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried
eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the
effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr
nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement
of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide
can be manipulated by controlling the properties of the absorbing cladding.
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Localized solutions of one-dimensional (1D) nonlinear
conservative guiding systems are known to belong to
continuous families characterized by the dependence of
the mode intensity on the propagation constant (or fre-
quency, or chemical potential, depending on the physical
system). In a broad context such modes are called solitons
[1]. In contrast, localized solutions of nonlinear dissipative
1D systems are isolated points in the functional space.
When stable, they are attractors, whose characteristics
depend on the system parameters, and are cited as dis-
sipative solitons [2]. While solitons emerge from the
balance between the nonlinearity and dispersion, dissipa-
tive solitons require also the balance between gain and loss
[3]. There are two known exceptions of this rule. The first
one is the parity-time (PT ) symmetric [4] systems where
the symmetry of the real and imaginary parts of the
complex potential ensures the balance between gain and
loss without need of additional constraints. Such modes
were found for the optical systems governed by the non-
linear Schrödinger (NLS) equation with PT -symmetric
potentials [5], and are widely investigated in numerous
applications [6,7]. The second type of nonconservative
systems supporting families of nonlinear modes is a NLS
equation with Wadati potentials [8], whose conservative
part has a specific relation to the gain and loss landscapes
[7,9–11]. This was numerically found in Ref. [9], explained
in Ref. [10], and in Ref. [11] it was argued that no other
potentials admit soliton families. Conceptually, the coex-
istence of conservative and dissipative regimes, is also
known for dynamical systems described by time-reversible
Hamiltonians [12].

The situation can be different, if a system is not strictly
1D and there exist additional governing parameters. In this
Letter we report a wide class of nonlinear waveguides with
gain at the core and loss at the cladding, which nevertheless
support propagation of continuous families of quasi-1D
solitons. The underlying physical idea is a setting where the
gain and loss are controlled by different mechanisms
affecting the carrier wave itself rather than its envelope.
Such a waveguide features properties of an open system:
the parameters of solutions are determined by the balance
between gain and loss. On the other hand, it supports
continuous families of solitons, i.e., obeys properties of a
conservative system. Moreover, the type of the nonlinearity
of such a system is controlled by the gain and loss. A
waveguide with a defocusing (focusing) Kerr dielectric
in the core can manifest effective focusing (defocusing)
nonlinearity felt by a propagating beam. This effect occurs
only if there exists an exceptional point (EP) in the linear
spectrum of the waveguide, i.e., the point where two (or
more) eigenvalues and eigenfunctions coalesce [13], and
represents a manifestation of the topological geometric
phase which is acquired by eigenmodes when encircling
the EP in the parameter space [14,15].
The relevance of EPs in physics was recognized more than

a century ago. The Voigt wave [16], which is the coalescence
of two plane waves propagating in absorbing crystals
having singular axes, exists at the EP of the dielectric tensor
[17,18]. Recently, the importance of EPs was demonstrated
in experiments with microwave cavities [19], laser systems
[20], waveguides [21], multilayered structures [22], and
optomechanical systems [23], to mention a few.
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If a system is nonlinear, an EP in the spectrum of its
linear limit still influences the propagation [20,24–26].
However, usually it is not considered as a factor affecting
the nonlinear properties of the system itself. In this Letter
we show how an EP can modify the effective nonlinearity
of the medium, in particular, changing its type.
Consider a planar waveguide consisting of an active

medium characterized by the dielectric constant ϵ ¼ ϵrþ
iϵi, with ϵr > 0 and ϵi < 0, which is bounded by two parallel
absorbing layers located at the planes y ¼ �l. The medium
obeys Kerr nonlinearity and is allowed to have nonlinear
absorption (nonlinear gain is treated similarly); i.e., it is
described by the Kerr coefficient χNL ¼ jχNLjeiφχ , where
φχ ∈ ½0; π� characterizes both the type of the nonlinearity and
the relative strength of the nonlinear absorption. The medium
is focusing if φχ ∈ ½0; π=2Þ and defocusing if φχ ∈ ðπ=2; π�.
At φχ ¼ π=2 the nonlinearity is purely absorbing.
Let F be a monochromatic field, either electric E or

magnetic H for TE or TM polarizations, respectively,
which is polarized along the x̂ direction and propagates
along the ẑ direction. It solves the Helmholtz equation

∇2Fþ l2k20ϵFþ χjFj2F ¼ 0: ð1Þ
We use the dimensionless variables measuring the coor-
dinates in the units of l, k0 ¼ ω=c, ω being the frequency,
and χ ¼ 4πχNLðlk0Þ2 being the material nonlinearity. To
simplify the model, we choose a waveguide whose linear
properties were previously studied [27]. Namely, we
consider that each of the absorbing boundaries is charac-
terized by an impedance η and that the fields satisfy the
impedance boundary conditions which can be written as
[28] n × E ¼ ηH, where n is the normal to the cladding
outwards the waveguide core. This choice is justified when
the modulus of the effective dielectric permittivity of
cladding is large, jϵcladj ≫ 1.
Because of the active filling, even in the presence of

absorbing boundaries one can find waveguide parameters
assuring simultaneous guidance of one mode, weak attenu-
ation of a few modes, and strong absorption of all other
modes. This selectivity stems from different conditions
of balance between gain and loss for modes having
different transverse distributions. If a solution of the linear
problem, i.e., of Eq. (1) at χ ¼ 0, is chosen in the form of a
superposition of the guided and weakly decaying modes, an
expected effect at weak material nonlinearity, j ffiffiffi

χ
p

Fj2 ≪ 1,
is the existence of solitons.
We show this for a waveguide with one guided and

one weakly absorbed mode [see Fig. 1(a), and Figs. 2(a)
and 2(e) below]. The propagating modes are searched in the
form F ∼ eiqzϕðyÞ, where q is the propagation constant.
The transverse profile of the mode ϕðyÞ is determined
from the non-Hermitian Sturm-Liouville eigenvalue prob-
lem ϕyy ¼ −Q2ϕ subject to the impedance (alias Robin)
boundary conditions: ϕTEð�1Þ ¼ �ηTEϕTE

y ð�1Þ with

ηTE ¼ ηc=ðiωlÞ for TE modes, and ϕTM
y ð�1Þ ¼

�ηTMϕTMð�1Þ with ηTM ¼ iωϵlη=c for TM modes.
Since the dielectric permittivity and surface impedance
are complex, the eigenvalue Q ¼ Q0 þ iQ00 is complex, as
well. Nevertheless, the propagation constant of the guided
mode q ¼ ðl2k20ϵ −Q2Þ1=2 is real, if

ϵr > ½ðQ0Þ2−ðQ00Þ2�=l2k20 and ϵi¼2Q0Q00=l2k20: ð2Þ

All other modes (marked by the subindex n) are absorbed if
the condition Q0Q00 > Q0

nQ00
n is verified. To distinguish the

weakest absorbing mode, below we use a tilde, i.e., ~ϕ, ~Q,
and ~q. For such a mode ~q ¼ ðl2k20ϵ − ~Q2Þ1=2 ¼ ~q0 þ i ~q00,
where ~q00 > 0, and j ~q00j ≪ j ~q0j.
We start with a waveguide whose linear spectrum does

not feature EPs. Let ψðyÞ be an eigenfunction of the Sturm-
Liouville problem adjoint to the above one for ϕðyÞ. The
states fϕ; ~ϕ;ϕ2;ϕ3;…g and fψ ; ~ψ ;ψ2;ψ3;…g constitute a
complete biorthogonal basis [29], which is endowed with
the scalar product hψ ;ϕi ¼ R

1
−1 ψ

�ðyÞϕðyÞdy. In particular,
hψ ; ~ϕi ¼ h ~ψ ;ϕi ¼ 0. The eigenfunctions ψ ¼ ϕ� and
~ψ ¼ ~ϕ� correspond to the eigenvalues Q� and ~Q�.
Next, we look for a solution of Eq. (1) in the form

F ≈ Aðx; zÞϕðyÞeiqz þ ~Aðx; zÞ ~ϕðyÞei ~qz, where A and ~A are
the slowly varying amplitudes of the modes. Performing
the multiple-scale analysis [29], we obtain coupled NLS
equations

2iqAz þ Axx þ ðgjAj2 þ g1e−2~q
00zj ~Aj2ÞA ¼ 0; ð3Þ

2i ~q0 ~Az þ ~Axx þ ð~g1jAj2 þ ~ge−2~q
00zj ~Aj2Þ ~A ¼ 0; ð4Þ

where the complex nonlinear coefficients describing effec-
tive self-phase and cross-phase modulations are

g¼ χhψ ; jϕj2ϕi=hψ ;ϕi; g1¼2χhψ ; j ~ϕj2ϕi=hψ ;ϕi;
~g¼ χh ~ψ ; j ~ϕj2 ~ϕi=h ~ψ ; ~ϕi; ~g1¼2χh ~ψ ; jϕj2 ~ϕi=h ~ψ ; ~ϕi: ð5Þ

Since ~ϕ is the most weakly decaying mode, at the propa-
gation distance z≳ 1= ~q00 the effect of all decaying modes on
the guided one, i.e., on A, can be neglected. After that
distance, the guided mode ϕ is the only one, which
propagates with the amplitude governed by the NLS
Eq. (3) with ~A ¼ 0. This however, does not guarantee yet
undistorted propagation because generally speaking g is
complex. In order to obtain the conservative NLS equation,
which is exactly integrable and thus possesses soliton (as
well as multi-soliton) solutions [1], we additionally have to
require g to be real. To this end we define the argument
φg ¼ arg ðhψ ; jϕj2ϕi=hψ ;ϕiÞ ∈ ½−π; π�. Then Eq. (3) with
~A ¼ 0 becomes the conservative NLS equation only if either
φχ ¼ −φg at φg ∈ ½−π; 0� or φχ ¼ π − φg at φg ∈ ½0; π� is
satisfied. This leads us to several interesting conclusions.
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First, if the total phase φ ¼ φχ þ φg of the effective
nonlinearity g is either 0 or π the absorbing boundaries may
support propagation of a single-mode soliton, by attenuating
all other modes. Second, since solitons of the NLS equation
constitute two-parametric families [1], they are characterized
by amplitudes and by velocities, the waveguide supports
continuous families of the propagating spatially localized
beams, i.e., behaves in this respect like a conservative
system. Third, it is possible to choose the waveguide
parameters such that the effective nonlinearity g for a guided
mode has opposite signs compared to the sign of the physical
nonlinearity χ of the waveguide core. Specifically, for the
nonlinear absorption considered here we have

g > 0 and Re χ < 0 if φg ∈
�
−π;−

π

2

�
;

g < 0 and Re χ > 0 if φg ∈
�
π

2
; π

�
: ð6Þ

Thus the combined effect of the (linear) boundary absorption
with (linear) gain of the active media may result in the
change of the type of the effective nonlinearity. Then
focusing (defocusing) material nonlinearity of the core
becomes effectively defocusing (focusing). Consequently,
this may result in the guidance of bright (dark) solitons even
in the defocusing (focusing) material nonlinearity of the
dielectric filling.
Now we turn to examples of waveguide architecture

supporting soliton propagation. The consideration will be
restricted to nonmagnetic claddings characterized by the
positive dielectric constant, ϵclad > 0, which corresponds to
natural materials (see Ref. [27] for examples). This last
requirement imposes conditions on the effective imped-
ances [27]: ReηTE, ImηTE < 0, and ReηTM, Im ηTM > 0.
The desired parameters can be achieved by adjusting the
wave number k0, the waveguide width l, the nonlinear
susceptibility, χNL, and the impedance η. The dielectric
permittivity is not considered as an adjustable parameter,
because the condition of mode guiding [Eq. (2)] fixes it as
soon as the respective impedance is chosen.
TE soliton.—For TE-polarized modes, we have found that

gain and loss do not change the sign of the effective
nonlinearity in thewhole domain of the explored parameters.
Figure 1(a) illustrates propagation constants for the parameter
choice ensuring the existence of one guided (red square) and
one weakly absorbed (blue triangle) mode. All other modes
(the lowest ones are shown in black) are strongly absorbed.
The transverse profile of the fundamental (guided) mode is
given by ϕðyÞ ¼ cosðQyÞ withQ ≈ 0.453 − 0.279i, and the
propagation constant is q ≈ 2.457. We also compute φg ≈
−0.0027 and, hence, one has to choose χ ¼ 1.3þ 0.0035i,
in order to ensure real g. The transverse profile of the weakly
decaying mode is described by ~ϕðyÞ ¼ sinð ~QyÞ, where
~Q ≈ 1.65 − 0.158i, and ~q ≈ 1.86þ 0.073i.

The direct numerical simulations of Eqs. (3) and (4), are
shown in Figs. 1(b) and 1(c). In Fig. 1(b) we observe stable
propagation of a single soliton carried by the fundamental
mode after the second mode is absorbed by the structure
(this is clearly visible on the 3D figure), while the upper
inset shows nondecaying evolution of the soliton A, and an
accompanying mode soliton ~A (after the distance z≳ 1= ~q00
the soliton is not affected by the decaying mode, because
Eqs. (3) and (4) become effectively decoupled). In Fig. 2(c)
we show the evolution of the two-soliton input (each input
soliton consists of carrying and weakly decaying modes).
After decay of the accompanying mode, we observe the
characteristic dynamics of interacting in-phase solitons
(i.e., of a breather) (cf. Ref. [30], see also Ref. [29]).
TM soliton.—In the spectrum of TM modes there can

exist EPs [27]. This makes the properties of TM modes
very different as compared with TE modes considered
above. Let the impedance ηTM be chosen in the vicinity of
an EP, i.e., ηTM ¼ ηEP þ reiΘ, where r ≪ 1 (for a given
statement ηEP has a specific numerical value, but can be
varied by modifying setting of the problem [29]).
Although, strictly speaking the small amplitude expansion
leading to Eqs. (3) and (4) fails in the neighbourhood of
ηEP, we are interested exclusively in the phase behavior.
Then, taking into account that at the EP two eigenvalues
coalesce, one can expandQ ≈QEP þ νeiϑ where ν ∼

ffiffiffi
r

p
≪

1 is a small parameter, while ϑ ¼ Θ=2þ ϑ0, where
ϑ0 ¼ const.. is the phase which is changed by π when
ηTM encircles the EP, i.e., when Θ is changed by 2π. Let the
coalescing modes be of cosine type, i.e., ϕðyÞ ¼ cosðQyÞ.

(a)

(c)(b)

FIG. 1. (a) Real part vs imaginary part of the propagation
constants for the waveguide with ηTE ¼ −1.25 − 3.16i, ϵ ¼ 1.5−
0.062i, jχNLj ¼ 0.025 and k0l ¼ 2π=3.1. Squares and triangles
represent the cosðQyÞ and sinðQyÞ modes, respectively. The
guided and weakest decaying modes are indicated by red and blue
color, respectively; their transverse profiles are shown in the inset.
(b) Dynamics of the single bright TE-soliton input A ¼ 2 ~A ¼
0.5sechð ffiffiffiffiffiffiffiffi

g=8
p

xÞ with the amplitude profiles shown in (b0)
(see also Ref. [29]). (c) Dynamics of the in-phase two-soliton
input: A¼2 ~A¼0.5fsech½ ffiffiffiffiffiffiffiffi

g=8
p ðxþ5Þ�þsech½ ffiffiffiffiffiffiffiffi

g=8
p ðx−5Þ�g.

The effective nonlinearities are g ¼ 1.24, ~g ¼ 1.02þ 0.02i,
g1 ¼ 1.34þ 0.07i, ~g1 ¼ 2.4þ 0.002i. Simulations were carried
out on the window −200 < x < 200 and 0 < z < 1000. The
inputs were perturbed by noise of order 5% of the amplitude.

PRL 119, 033905 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

033905-3



Then in the leading order of the effective nonlinearity g
takes the form

g ≈ −χe−iϑ
R
1
−1 cos

2ðQEPyÞj cosðQEPyÞj2dy
ν
R
1
−1 y sinð2QEPyÞdy : ð7Þ

Here we used the self-orthogonality of the eigenfunctions
in the EP (see, e.g., Ref. [14]):

R
1
−1 cos

2ðQEPyÞdy ¼ 0.
Thus φg ¼ −ϑþ const and the argument of g changes by π

when ηTM encircles ηEP. According to the conditions,
Eq. (6), this means that the type of the effective nonlinearity
changes (form focusing to defocusing or vice versa)
independently of the material nonlinearity χ.
If Q is located away from the EP, the total phase φ

becomes nonlinearly dependent on the rotation angle Θ.
This dependence in function of the “distance” r between
ηTM and the EP is illustrated in two central panels of Fig. 2.
In the figure the change of the rotation angle Θ corresponds
to the “motion” along the curves in the direction indicated
by arrows. The striking situation of the opposite signs of the
physical and effective nonlinearities is observed when the
parameters “move” from black discs (Reχ > 0, g > 0) to
the white discs (Re χ > 0, g < 0). With the increase of r the
smaller rotation angle Θ is needed to achieve the total-
phase change π. At the cladding impedance ηTM corre-
sponding to the black discs, the effective nonlinearity is
focusing and bright solitons can propagate in the system.
An example is shown in the upper panels of Fig. 2. We
observe very robust evolution of the guided mode, even if at
the input a weakly decaying mode is excited as well. Now
the weakly decaying mode has the same parity as the guided
one [shown by red and blue squares in Fig. 2(a)] since both
of them coalesce in the EP. The energy carried by both
modes is concentrated near the absorbed boundaries. Unlike
in the TE case, now the guided mode is not the fastest one:
the largest positive propagation constant belongs to the
decaying sine mode [the right triangle in Fig. 2 (a)].
When the physical and effective nonlinearities are of

different signs, in a waveguide with focusing nonlinearity,
there can propagate a stable dark soliton. In Fig. 2 this is the
situation corresponding to the white discs in panels (c) and
(d). The stable evolution of a guided dark soliton excited at
the input together with a weakly decaying dark soliton is
illustrated in Fig. 2(f). Interestingly, while the structure of
the modes remains similar to that of the bright soliton
obtained for the same nonlinearity, now the guided and
weakly decaying modes are “exchanged” [c.f. the insets
and the location of red and blue squares in Figs. 2(a)
and 2(e)]. Similarly one can design a waveguide with
defocusing core nonlinearity supporting the propagation of
bright TM-polarized solitons. Finally, we mention the
possibility of anomalous enhancement of the nonlinearity,
which stems from the non-Hermitian nature of the system
allowing the inner product hψ ;ϕi to be infinitely small
which leads to anomalously large effective nonlinearity g,
seen from Eqs. (5) and (7) where g → ∞ at ν → 0 [29].
In conclusion, we reveal the key features of a dissipative

waveguide with a nonlinear active core and absorbing
boundaries which allow for the propagation of single-mode
solitons and attenuate all other modes excited at the input.
The type of the effective nonlinearity (focusing vs defocus-
ing), as well as its absorbing or active characteristics are
controlled by the boundary conditions. If the spectrum of
the linear modes features EPs, the effective nonlinearity

(b)
(a)

(e)

(c) (d)

(f)

FIG. 2. Central panels: Imaginary (c) and real (d) parts of the
eigenvalue Q corresponding to a TM mode in the vicinity of EP,
ηEP ¼ 1.6506þ 2.05998i, vs real and imaginary parts of the
impedance, for 0 < r < 0.04 and 0 ≤ Θ ≤ 2π. The mode is
chosen to be guided at two values of the total phase φ: at black
discs Θ ¼ 0, φ ¼ 0, and g > 0, while white discs represent the
same points after change of the impedance resulting in φ ¼ π and
g < 0. The positions of the phase changes are shown at
ðr;ΘÞ ¼ ð0.01; 1.25πÞ; ð0.02; 0.91πÞ, and ð0.03; 0.722πÞ, when
χ ¼ 0.12þ 1.29i; 0.61þ 1.14i, and 0.87þ 0.95i, respectively.
Different χ for different radii ensure that g is real at both white
and black points. Upper panels: (a) Propagation constants, and
profiles of the guided and weakly decaying TM modes (in the
inset), and (b) dynamics of a bright TM soliton with A ¼ 2 ~A ¼
0.5sechð ffiffiffiffiffiffiffiffi

g=8
p

xÞ at the input, for g ¼ 1.42 at r ¼ 0.03 [black
discs in (c) and (d)] observed for ηTM ¼ 1.681þ 2.060i,
ϵ ¼ 1.5 − 0.986i, q ¼ 1.63, and ~q ¼ 1.897þ 0.386i. Lower
panels: (e) Propagation constants, and the guided and weakly
decaying modes (in the inset) and (f) dynamics of a dark TM
soliton excited by the A ¼ 2 ~A ¼ 0.5 tanhð ffiffiffiffiffiffiffiffiffiffijgj=8p

xÞ input for
g ¼ −0.073 at r ¼ 0.03 [white discs in (c) and (d)] obtained for
ηTM¼1.631þ2.083i, ϵ¼1.5−0.999i, q¼1.85, and ~q¼1.609þ
0.409i. In all panels k0l ¼ 2π=3.1. Simulations were carried
out on the window −200 < x < 200 and 0 < z < 1000. Inputs
were perturbed by noise of order 5% of the amplitude.
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may acquire a sign opposite to the sign of the material
nonlinearity of the core, which stems from the geometric
phase acquired by the eigenfunctions when the impedance
encircles the EP. In such situations the focusing (defocus-
ing) Kerr nonlinearity can support propagation of dark
(bright) solitons. The solitons reported are structurally
stable: the dependence on the waveguide parameters is
continuous under the change of the parameters assuring the
existence of the guided mode, while weak deviation of the
parameters from the ideal guiding conditions results only in
weak net dissipation or gain. An important practical output,
is that in the reported structures the sign of the effective
nonlinearity can be changed in situ when the physical
characteristics of the boundary are changed (by remote
similarity with the atomic physics, where the change of the
nonlinearity type is achieved by the Feshbach resonance).
Although we used the impedance boundary conditions, the
reported effects are accessible with other types of absorbing
boundaries and other types of dielectric filling. In particu-
lar, by using cladding with different impedances or made of
metasurfaces [31], or birefringent filling, one can control
the position of the EP in the complex plane.
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