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Dissipative solitons often behave as quasiparticles, and they may form molecules characterized by
well-defined bond distances. We show that pointwise nonlocality may lead to a new kind of molecule where
bonds are not rigid. The elements of this molecule can shift mutually one with respect to the others while
remaining linked together, in a manner similar to interlaced rings in a chain. We report experimental
observations of these chains of nested dissipative solitons in a time-delayed laser system.
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In a seminal contribution, Turing set the bases of
morphogenesis [1]. He demonstrated that, in a dissipative
environment, the interplay between local nonlinearities
and differential operators was sufficient to initiate self-
organization and to generate an infinite variety of patterns.
These emergent structures can be found in many physical,
biological, and laboratory systems. Among them, dissipa-
tive solitons (DSs) are of particular interest, and they have
been widely observed in nature [2–5]. When DSs can be
individually addressed by a local perturbation, they have
also been called localized structures [6–9]. These states are
particularly relevant for applications when implemented in
optical resonators as light bits for information processing
[10–12]. Dissipative solitons may form bound states, also
called “molecules,” via the overlap of their oscillating tails,
which creates “covalent” bonds leading to stable equilib-
rium distances [13–19].
In this Letter we disclose a different kind of molecule

composed by chains of nested DSs, which are globally
bounded yet locally independent, like an ensemble of
interlaced rings. Interesting enough, similar molecular
structures exist in chemistry; they are composed by
interlocked macrocycles and are called catenanes [20].
While the usual covalent bound states of DSs move as a
rigid ensemble when subject to perturbations, the stability
analysis of these interlaced DSs reveals that they exhibit
several neutral modes corresponding to the individual
translation of each element. In other words, small displace-
ments between the components do not relax, yet the
ensemble remains stable. We show that these molecules,
which challenge the usual notion of local stability for DS
compounds, can be obtained in the presence of a pointwise
nonlocality coupling a field Φðx; tÞ to a distant point in
space Φðxþ Δ; tÞ.
Nonlocality has been widely explored in spatially

extended systems and has been shown to induce patterns
[21], convective instabilities [22,23], or N-fold structures
[24]. Distributed nonlocality was recently found capable of
stabilizing DSs [25] and was identified as an important

mechanism governing the morphogenesis processes in
liquid crystal [26] and vegetation patterns [27]. Global
coupling, as an extreme case of nonlocality, is known to
have a deep impact on DS bifurcation diagrams [28].
Let us consider a partial differential equation (PDE) in

one spatial dimension x able to sustain DSs of characteristic
length l. The difference between standard covalent mole-
cules and the nested states can be illustrated by adding to
this PDE a small pointwise nonlocal perturbation of range
Δ and amplitude ε. We have

∂tΦ ¼ F ðjΦj2; ∂2
xÞΦþ εΦðxþ Δ; tÞ; ð1Þ

whereF is a generic operator which may lead, for example,
to the Ginzburg-Landau equation, as in Ref. [2]. For
sufficiently small values of ε, the overall structure of the
unperturbed DS solution is preserved, but it develops a
small echo of amplitude ε at the distance Δ, as a
consequence of the nonlocal term. This is qualitatively
shown in Fig. 1(a), where we assumed that Δ > 0. Because
of the nonlocal term, additional weaker replicas of this echo
also appear at distances nΔ (n ∈ N), with amplitudes εn,
but they can be neglected in this discussion. Without the
nonlocal term (ε ¼ 0), standard covalent molecules are
generated by an interaction between the decaying oscillat-
ing tails of two nearby DSs, thus leading to equilibrium
distances d ∼ l, as in Refs. [16,17]. When ε ≠ 0, and for
nonlocality range Δ ∼ l, the rightmost DS tail will be

FIG. 1. (a) Sketch of a DS with a pointwise nonlocal term Δ.
(b) Covalent molecule where the rightmost DS is linked to the
leftmost one via its echo. Note that the echo of the rightmost DS
falls outside the panel. (c) Molecule with nested elements.
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modified, which may induce additional equilibrium dis-
tances. In this case, the binding occurs as a consequence
of the interaction between the main pulse of a second DS
and the echo of the first, which induces an equilibrium
distance d ∼ Δ, that is robust even when Δ ≫ l, as shown
in Fig. 1(b). All these molecules are rigid since they feature
well-determined bond lengths and they exhibit a single
neutral mode corresponding to the translation degree of
freedom of the whole ensemble. A novel kind of molecule
appears in the case Δ ≫ l, when the second DS is placed at
a distance d from the first DS such that l < d < Δ. In this
case, shown in Fig. 1(c), the two DSs are sufficiently far so
that they can move independently but, at the same time, the
second DS cannot overcome the repulsive barrier induced
by the echo of the first DS. As such, the two DSs are
globally linked while being locally independent. A useful
analogy to picture these situations can be made using rings
which are rigidly bound in the situation represented in
Fig. 1(b), while they are interlaced in the case of Fig. 1(c).
Pointwise nonlocality may not be easy to achieve

experimentally and, in order to observe such new bounded
states, we have studied their realization in time-delayed
systems (TDSs). In recent years, building on the strong
analogies between spatially extended and time-delayed
systems [29–31], the latter have been proposed for con-
trolling spatial DSs [32], hosting chimera states [33],
domain walls [34–36], vortices [37], and, in particular,
temporal DSs [38–42]; see Ref. [43] for a review. The idea
that a feedback with a time delay τf is akin to a spatial
dimension is rooted in the representation developed in
Ref. [29] based on the observation that TDSs exhibit slowly
evolving periodic regimes with period T ∼ τf. By cutting
the temporal trace generated by a TDS into n ∈ N chunks
of duration T and stacking them into a two-dimensional
map, one obtains a diagram in which the horizontal
dimension plays the role of a pseudospatial variable
representing the waveform within the nth period, while
the vertical axis depicts the discrete time index n. In this
formalism [30], the temporal profile over one period—the
information in pseudospace—is mapped onto the next
period. As such, one understands that the inclusion of a
perturbation with a second delay τr induces a pointwise
nonlocality with range Δ ¼ τr. If the temporal profile does
not evolve significantly during p periods, similar results are
to be found whenever τr ¼ pT þ Δ. We conclude that the
effective nonlocal parameter Δ is Δ ¼ τr½T�, with ½·� being
the modulo operator.
An example of a photonic system with a double time

delay capable of hosting DSs and molecules has recently
been described [41] and is summarized in Fig. 2(a). A
single-transverse mode vertical-cavity surface-emitting
laser (VCSEL) is coupled to an external cavity that selects
one of the linearly polarized states of the VCSEL (Y, say)
and feeds it back twice, once with a time delay τf, and
once with a delay τr after being rotated into the orthogonal

direction. Experimental results described in Ref. [41], show
that, when τf is much larger than the laser time scales, this
system may host vectorial DSs which correspond to a full
rotation of the polarization vector state on the Poincaré
sphere, mainly along its equatorial plane. Accordingly, the
X polarization component of these DSs corresponds to
upward pulses over a low intensity background [Fig. 2(b)],
while their Y polarization is in perfect antiphase with X,
thus leaving the total intensity constant. Figure 2(b) shows
that the main pulse corresponding to the X component of
the DS is followed by a small inverted kink after a time Δ.
This echo is the signature of the nonlocal coupling
described in Fig. 1(a), induced here by the additional delay
τr, which leads to a nonlocality range Δ. It is worth noting
that this observation is reminiscent of the interaction
between temporal DSs in injected Kerr fibers mediated
by sound waves [44], although, in our case, the effect is
fully controllable and can be used to tune the interaction
between DSs. As illustrated in Fig. 1(b), the echoes
observed in Fig. 2(b) create binding forces leading to
the existence of molecules whose separation between
elements d is precisely d ¼ Δ or integer multiples of Δ.
Several of these covalent molecules have been experimen-
tally reported in Ref. [41] for short nonlocal range Δ≃ l.
These observations are well described by the so-called

spin-flip model [45], supplemented by the inclusion of the
delayed reinjection terms. A multiple time scales analysis
of this model applied in the limit of large damping of the
relaxation oscillations, negligible dichroism, moderate
birefringence γp, and feedback rates ðη; βÞ leads to a simple
equation describing the azimuthal angle Φ of the polari-
zation vector over the equatorial plane of the Poincaré

FIG. 2. (a) Double delay experimental situation featuring DSs
with nonlocal coupling. VCSEL output is split into two arms by a
beam splitter (BS). Along the first (polarization selective feed-
back, PSF), Y polarization is selected, and it is fed back after a
delay τf at a rate η. Along the second (crossed polarization
reinjection, XPR), Y polarization is selected, rotated into the
orthogonal polarization direction (X) and reinjected after a delay
τr at a rate β. (b) Experimental time trace of the X polarization
intensity showing a single DS per period.
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sphere [41,46]. The following simpler delayed equation
was found to reproduce well the dynamics:

_Φ
2
¼ αγp sinΦþ η̄ sin

Φτf

2
cos

Φ
2
− β̄ sin

Φ
2
sin

Φτr

2
; ð2Þ

with Φτf;r ¼ Φðt − τf;rÞ being the delayed arguments,

ðη̄; β̄Þ ¼ ðη; βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

, with α being the Henry’s linewidth
enhancement factor. If not otherwise stated, the parameters
are α¼2, γp=π¼4.78GHz, η=π¼8.68GHz, β=π ¼
6.68 GHz, τf ¼ 3.33 ns, and τr ¼ 4 ns. Assuming a con-
stant intensity I0, the X and Y components of the intensity
read Ix ¼ cos2 ðΦ=2Þ and Iy ¼ I0 sin2 ðΦ=2Þ. However,
linearly polarized light can have arbitrary orientations that
are neither X nor Y. This is taken into account by defining
the normalized Stoke parameters along the equator S1 ¼
cosðΦÞ and S2 ¼ sinðΦÞ.
Equation (2) is used for exploring the situation where

Δ ≫ l and, in Figs. 3(a) and 3(c), a typical covalent
molecule of DSs is depicted in terms of the Stokes
parameters and the polarization resolved intensities. Each
element of the molecule is composed by a large polariza-
tion kink for Φ followed by its nonlocal echo at a distance
Δ, and the echo of the first DS is the anchor point for the
second. In addition to these covalent structures, which
exemplify the situation shown in Fig. 1(b), a novel kind of
molecules is observed where the elements are interlaced
one with another, as sketched in Fig. 1(c). An example of
these nested DS molecules where the second DS is trapped
between the first DS and its echo is described in Figs. 3(b)
and 3(d). Figure 3(b) shows that, on the Poincaré sphere,
the molecule is defined by a large rotation of the polari-
zation vector corresponding to the main peak of the first

DS. This is followed by opposite rotation corresponding to
the main peak of the second DS, thus bringing back the
vector to the original state. Similar but smaller kinks follow
corresponding to the nonlocal echoes of the two DSs.
Accordingly, Fig. 3(b) evidences that this nested molecule
has the additional property of being a kink-antikink pair,
such that the total topological charge is zero.
Considering the DSs as periodic solutions of a high-

dimensional dynamical system permitted us to perform the
analysis of their Floquet multipliers. Floquet theory allows
us to study the linear stability of periodic solutions; see, for
instance, Ref. [47]. The stability analysis performed in
Ref. [41] confirmed that the covalent molecule in Figs. 3(a)
and 3(c) possesses a single neutral mode corresponding
to the translation invariance of the whole molecule. The
results of a similar analysis applied to the nested molecule
in Figs. 3(b) and 3(d) are summarized in Fig. 4. The
temporal profile of the solution over which we performed
the stability analysis is depicted in Fig. 4(a), and one
notices in Fig. 4(b) not one but two quasidegenerate
Floquet multipliers μi close to the value μ ¼ 1 in the
complex plane. We also show in Fig. 4(a) the eigenvectors
associated with these two neutral modes. One can easily
identify them with the temporal derivatives of the kink
and of the antikink composing the nested molecule, which

FIG. 3. Numerical integration of Eq. (2). Evolution of the
Stokes parameters ðS1; S2Þ and intensities ðIx; IyÞ in the cases of
(a),(c) a covalent and (b),(d) a catenane molecule. Pure emission
along the X and Y directions correspond to the red and blue lines
with ðS1; S2Þ ¼ ð1; 0Þ and ðS1; S2Þ ¼ ð−1; 0Þ, respectively. The
steady state of Eq. (2),Φs, is depicted in pink, while the green line
represents −Φs.
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FIG. 4. Numerical analysis of the catenane molecule in
Figs. 3(b) and 3(d). (a) Temporal profile (black line) and the
associated neutral eigenvectors (dotted blue and dashed-dotted
red lines). (b) Floquet multipliers μi and (c) an enlargement
around μi ¼ 1 where one distinguishes two quasidegenerate
multipliers. (d) Space-time diagram of Ix in the presence of
additive white noise of amplitude ξ ¼ 3 × 10−2. The position of
each DS is given by the strong intensity peak, followed by the
smaller intensity dip echoing at distance Δ. The intensity of Ix
grows from white to black.
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correspond to their individual translation modes. The
residual interactions between DSs, which are always
present if their separation is finite, renormalize the
Floquet multipliers and explain their small deviation with
respect to unity. In the limit τf;r → ∞, we find numerically
that they converge to μ ¼ 1. In other words, our local
analysis shows that the two DSs composing the molecule
are indeed locally independent. However, it fails to show
their global dependence, for which the consideration of the
whole temporal profile is needed.
The local independence of the DSs forming the bound

state shown in Figs. 3(b) and 3(d) contrasts with the rigid
behavior of the components of the covalent molecule
shown in Figs. 3(a) and 3(c). This evidence is further
supported by analyzing the motion of the structure repre-
sented in Fig. 3(b) and 3(d) over many round-trips in the
presence of noise. While independent DSs exhibit uncorre-
lated random walks under the action of noise present in the
system, DSs forming covalent molecules behave as a
unique rigid body; see, for instance, Figs. 3(a) and 3(b)
in Ref. [41]. The stochastic evolution of the nested DS
molecules described in Figs. 3(b) and 3(d) is shown in
Fig. 4(d) by using a spatiotemporal diagram where the time
trace for the polarization resolved intensity Ix is folded over
itself in such a way that the first DS remains motionless.
This reference frame choice permits us to better visualize
the fluctuations of the distance between the components
of the molecule, although it hides the Brownian evolution
of the whole molecule. We stress that, because we are
plotting the intensity along the X direction Ix, the DS main
pulse corresponds to a peak (P), while the echo corre-
sponds to small dip (D) at a distance Δ from the peak.
Figure 4(d) shows that, despite the fact that the two DSs can
drift with respect to one another, the distance between them
remains bounded, and the main kink of the second DS is
always caught between the main kink of the first DS and its
echo. Also, this representation allows us to distinguish
morphologically two elements of a catenane molecule from

two independent DSs. The signature of the first corresponds
to two peaks followed by two dips—i.e., P1P2D1D2 in
Fig. 4(d)—while two independent DSs would correspond
to P1D1P2D2.
Our theoretical predictions of the existence of catenane

molecules are supported by experimental observations. A
wealth of these molecule states coexisting for the same
parameter values has been observed in the experimental
system described in Fig. 2(a). In Fig. 5 we plot exper-
imentally obtained spatiotemporal diagrams using the
reference frame of the leftmost DS, as in Fig. 4(d). We
show the evolution of two independent DSs in Fig. 5(a) and
the evolution of a standard covalent molecule, observed
for large values of Δ in Fig. 5(b). Here, the binding occurs
via the nonlocal echo, as in Figs. 3(a) and 3(c). Molecules
of nested DSs are shown in Figs. 5(c) and 5(d). Besides
the simplest catenane corresponding to P1P2D1D2 (not
shown), we depict in Fig. 5(c) a situation where three DSs
are interlaced, giving the structures P1P2D1P3D2D3. Their
local independence can be deduced from their relative
uncorrelated motion, similar to that of the independent DSs
depicted in Fig. 5(a). Counting from left to right, we note
that DS2 is interlaced with DS1, while DS3 is interlaced
with DS2. A more complex catenane of six elements is
shown in Fig. 5(d). Here, two elements (DS2 and DS3) are
very close to each other, and their echoes trap a distant
element (DS6) driving its diffusion, thus evidencing the
binding forces induced by the echo at the source of the
catenane molecules. The periodic boundary conditions in
the space-time diagrams are inherent to the periodicity of
the temporal traces. This explains why the rightmost DSs
have their satellites on the left in Fig. 5(d).
In conclusion, we described how the presence of a

pointwise nonlocality in an extended system can give rise
to a new kind of molecule of DSs whose elements are
simultaneously locally independent and globally locked.
Owing to the strong link between spatially extended and
delayed systems, we analyzed the implementation of
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FIG. 5. Experimental space-time diagrams taking the first DS as a time reference for visually enhancing the relative motion of
other DSs. In all of the cases, the bias current is J ¼ 10Jth and T ∼ τf ¼ 10.8 ns. (a) Two independent DSs, Δ ¼ 0.68 ns (0.06T).
(b) Covalent molecule with Δ ¼ 3.05 ns (0.28T) and where the binding occurs via the interaction with the nonlocal echo. (c),(d)
Two different cases of catenane molecules with (c) Δ ¼ 2.08 ns (0.19T) and (d) Δ ¼ 7.2 ns (0.67T). The intensity of Ix grows from
white to black.

PRL 119, 033904 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

033904-4



pointwise nonlocality using a VCSEL enclosed in a double
external cavity. The experimental signature of the optical
catenane is found to closely match our predictions. We
note that other TDSs capable of generating DSs, as in
Refs. [38,39], would yield similar catenane molecules.
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