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We introduce a wave front shaping protocol for focusing inside disordered media based on a
generalization of the established Wigner-Smith time-delay operator. The key ingredient for our approach
is the scattering (or transmission) matrix of the medium and its derivative with respect to the position of the
target one aims to focus on. A specific experimental realization in the microwave regime is presented
showing that the eigenstates of a corresponding operator are sorted by their focusing strength—ranging
from strongly focusing on the designated target to completely bypassing it. Our protocol works without
optimization or phase conjugation and we expect it to be particularly attractive for optical imaging in
disordered media.
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One of the most formidable challenges for imaging
in complex environments is to overcome the limitations
imposed by the presence of disorder. In particular, if the
wave scattering induced by a disordered medium is strong
enough to suppress the ballistic contribution in the imaging
process entirely, seeing through this medium or focusing on
a target inside of it becomes a highly nontrivial exercise—a
difficulty that is particularly evident in the field of biological
and medical imaging. A promising new approach to image
and focus also in the regime of multiple scattering is to
exploit the information stored in a system’s scatteringmatrix
[1,2]. In this emerging new field of “wave front shaping”
[3,4] spectacular advances have recently beenmade, such as
to focus light behind an opaque layer [5–9], or to send and
retrieve images across it [10–14]. Also, thanks to these
advances the focusing of light inside highly disordered
media could recently be demonstrated using embedded
fluorescent probes and nanocrystals [15–17] or using digital
optical phase conjugation to focus light onto a target moving
inside an otherwise static environment [18–21].
Here we present a new approach for focusing inside a

disordered material that has the considerable advantage of
working without the requirement to implant a fluorescent
body at the focus or to phase conjugate a wave scattered at
the focus position. Our technique also allows us to tune the
degree of focus on a designated position inside the disorder,
including the case where the target is entirely avoided by
the scattered wave front. Our starting point for achieving
this goal is the time-delay operatorQ introduced by Eugene
Wigner and Felix Smith [22,23]. Originally devised for

nuclear scattering problems to deduce the time associated
with a scattering event from stationary measurements of the
asymptotic scattering amplitudes, this concept prominently
resurfaced in mesoscopic physics [24] and very recently in
attosecond physics [25] as well as in the newly emerging
community of wave front shaping [4,26–30].
The Wigner-Smith time-delay operator Q is constructed

based on a system’s scattering matrix S by way of a
frequency derivative, Q ¼ −iS−1dS=dω. The eigenvalues
of Q, also called “proper delay times,” measure the time
delay associated with the scattering by a given potential
[4,31–33]. The corresponding eigenvectors, also called
“principal modes,” are states that can be associated with
this well-defined time-delay—a property that makes them
dispersion-free [26] in the sense that a small variation of
their input frequency does not change their spatial output
profile. Moreover, principal modes have been shown to be
“particlelike” in situations where ballistic scattering occurs
[27]. The potential for applications of these states as
efficient communication channels in systems with multiple
in- and output ports has recently taken center stage when
first experiments reported on the successful implementation
of principal modes in optical multimode fibers [28,29] as
well as in resonant scattering media [30,34].
Here we demonstrate that the concept underlying the

principal modes is not at all restricted to the time-delay
operator Q from above; specifically, we show that in the
same way as the conventional principal modes are invariant
with respect to a frequency variation, we may also create
wave states that are invariant with respect to changes in the
system configuration, like a local shift of a designated
scatterer inside a disordered medium. While the frequency-
insensitive principal modes are the eigenstates of the time-
delay operator Q ¼ −iS−1dS=dω (involving a frequency
derivative), the class of states we introducewill be the eigen-
states of a corresponding operator Qα ¼ −iS−1dS=dα,
where the parameter α stands, e.g., for the position of a
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movable scatterer.What is special about our new approach is
that the eigenstates of Qα are not only insensitive to a small
change of α, but that the associated eigenvalues indicate how
strongly the corresponding conjugate quantity to α is
affected by the scattering process. This insight allows us
to maximally focus on or maximally avoid a specific target
inside multiple scattering media just based on the medium’s
scatteringmatrixS and its variation due to a shift of the target
particle that one aims to focus on.
We start by reviewing the principal modes’ remarkable

property of being insensitive with respect to a change in
frequency of the incident wave. The corresponding eigen-
value equation for the principal modes u⃗n (given as a
coefficient vector in a certain basis) and for the proper delay
times θn reads as follows:

Qu⃗n ¼ −iS−1
dS
dω

u⃗n ¼ θnu⃗n; ð1Þ

with ω being the frequency. In a waveguide system, as
shown in Fig. 1, the incident principal modes can be
decomposed into waves injected from the left and right
lead, respectively, i.e., u⃗n ¼ ðu⃗n;L; u⃗n;RÞT . For a unitary
scattering matrix, S†S ¼ 1, the time-delay operator Q is
Hermitian with real eigenvalues θn. Using the input-output
relation v⃗nðωÞ ¼ SðωÞu⃗n, we can rewrite Eq. (1) for a
(static) time-delay eigenstate u⃗n evaluated at a chosen
frequency ω0

dv⃗n
dω

�
�
�
�
ω0

¼ iθnv⃗nðω0Þ→ v⃗nðω0þΔωÞ≈eiθnΔωv⃗nðω0Þ: ð2Þ

The expression on the right-hand side of Eq. (2) states that
the output vector of a principal mode, v⃗n ¼ ðv⃗n;L; v⃗n;RÞT ,
retains its original orientation when shifting the input
frequency in the vicinity of ω0. This, in turn, translates
into output patterns that are invariant (to first order) with
respect to a frequency change (apart from a complex global
factor). An aspect of the above derivation that has so far
been unexploited is the fact that the derivative in Eq. (1)
does not necessarily have to be taken with respect to the
frequency. In other words: the symbol ω can in principle
represent any other parametric dependence of the scattering
matrix and the stability property of the corresponding
principal modes will still hold with respect to a variation
of this new parameter. Accordingly, we shift our attention
to a whole class of generalized Wigner-Smith (GWS)
operators Qα ¼ −iS−1dS=dα in which the frequency ω
is replaced by the arbitrary parameter α. We also expect that
these GWS operators may have interesting connections to
earlier works where statistical properties of parametric
variations of the scattering matrix have been studied
[35–37].
While the eigenstates of Qα are invariant with respect to

a small parametric shift of α already by construction [as in
Eq. (2) withω → α], we still need to clarify how to interpret
the corresponding eigenvalues θαn. Already from the dimen-
sions it is clear that θαn must be associated with the
conjugate variable to α, in the same way as the delay time
θ is the conjugate quantity to the frequency ω. To make this
more evident we now define Cα ≔ −id=dα as the corre-
sponding conjugate operator to α and assume that α stands
for a global variable. It follows after a short derivation (see
Supplemental Material [38]),

u⃗†Qαu⃗ ¼ u⃗†Cαu⃗ − v⃗†Cαv⃗ ¼ hCαiin − hCαiout; ð3Þ

where v⃗ðαÞ ¼ SðαÞu⃗ is the output vector and h� � �iin=out
denotes the expectation value evaluated in the input or
output scattering state. Following Eq. (3), Qα is the
appropriate operator to measure the shift in the conjugate
variable to α, which the wave experiences due to the
scattering process—in perfect analogy to the time-delay
operator measuring a shift in time, i.e., in the conjugate
quantity of the frequency ω. One specific example for such
a global parameter α could be the displacement in y
direction (i.e., α ¼ y) of the entire scattering landscape
from its initial position. The conjugate variable to the
position is the momentum such that the eigenvalue θyn of the
operator Qy measures the momentum shift (in the y
direction) that the corresponding eigenstates experience
as a result of scattering at the entire potential landscape.
Solving the eigenvalue problem for the operator Qy thus
provides us with an orthogonal and complete basis of
eigenstates that are sorted by this momentum shift. To be
more precise, the operator Qy measures the shift in the

FIG. 1. Sketch of the experimental setup. The system consists of
a rectangular aluminum waveguide of height H ¼ 8 mm, width
W ¼ 10 cm, and total length L ¼ 2.38 m, see middle panel. The
top plate (not shown) can be removed. The wave front is injected
from the left using ten monopole antennas, see bottom panel. The
scattering region displayed in the top panel has a length Ls ¼
60 cm and consists of 18 cylindrical Teflon scatterers (black
cylinders, index of refraction n ¼ 1.44, radius 2.55 mm, height
8 mm). A (re-)movable brass scatterer of radius 8.825 mm and
height 8 mm is located in the central part of the scattering region.
The placement of scatterers in this sketch was randomly generated
and matches the actual scatterer positions in the experiment. The
distance between the injecting antenna array and the scanning
antenna is La ¼ 1.50 m. The grained area around the movable
scatterer indicates the region shown in Figs. 2 and 3.
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wave number in the displacement direction, but for the sake
of simplicity we refer to this shift as momentum shift Δk.
In the present context, we will be specifically interested

in the case where α is the transverse position yi of the ith
scattering element inside a strongly disordered medium
consisting of altogether itot ≥ i such individual elements
(see Fig. 1). In this case, α does not represent a global
variable since only the ith scatterer is shifted rather than the
whole system. It turns out that Eq. (3) still remains valid
for this more general case, but that the corresponding
expectation values are then evaluated based on the local
field amplitudes in the vicinity of the ith scatterer (see
Supplemental Material [38]). The eigenvalues θyin ofQyi are
thus equal to the momentum shift Δki that the wave
experiences locally when colliding with the ith scatterer
(in the presence of all other scatterers and boundaries of the
medium). Note that a large momentum shift requires that
the wave front of the incident eigenstate is backscattered
significantly at the target position, which is equivalent to
focusing on this scatterer. On the other hand, when the
wave does not get scattered at the target at all (e.g., by not
reaching the ith scatterer), the momentum transfer will,
correspondingly, be very small. In this way the GWS
operatorQyi provides us the means to focus on a designated
scatterer inside a disordered medium or to omit this target
simply by generating an eigenvector of the GWS operator
corresponding to a large or small eigenvalue, respectively.
To demonstrate the efficiency of this approach also in the

experiment, we implemented a microwave scattering setup
as displayed in Fig. 1, consisting of a rectangular multi-
mode waveguide made of aluminum with dimensions
L ×W ×H ¼ 2.38 m × 10 cm × 8 mm (see caption in
Fig. 1). Additional absorbers (types: LS-14 and LS-16
from EMERSON&CUMING) at the ends of the waveguide
mimic semi-infinite leads. Ten antennas are placed equi-
distantly in the incident part of the waveguide controlling
ten transmission channels individually. The antennas are
addressed by IQ modulators (GTM 1 M2L-68A-5 of GT
Microwave Inc.), which allow us to adjust the phase and
amplitude of the signal emitted by each antenna. At the
operation frequency of 15.5 GHz, ten transverse electric
modes are excited (shaping the incident wave front is
explained in more detail in Ref. [42]). The array of emitting
antennas is connected via a power splitter (Microot
MPD16-060180) to a 4 port vector network analyzer
(VNA, Agilent E5071C). The transmission through the
scattering system is measured with a single movable
antenna placed at the output side of the waveguide. In
the middle we place 18 cylindrical Teflon scatterers of
radius r ¼ 2.55 mm forming the disordered background
and one brass scatterer of radius rb ¼ 8.825 mm being the
designated scatterer that we shift to evaluate the spatial
derivative in the GWS operator. The relatively high
refractive index of the Teflon elements (n ¼ 1.44) lets
all waves undergo multiple scattering events before being

transmitted. Both the material and the increased size of the
targeted brass scatterer are chosen to increase the signal-to-
noise ratio of the signal its shift leaves in the measured
scattering amplitudes. In Ref. [38] we also provide numeri-
cal simulations to demonstrate the applicability of our
concept for the case when all scatterers are made of Teflon
(or brass) and many more than ten modes are involved.
Note that we stay away from the regime of Anderson
localization where wave control is very limited [43]. In the
following, the parameter α corresponds to the transverse
position yb of the central brass scatterer and the operator
Qyb can be computed from the shift �Δyb from its initial
position, which we choose in the experiment to be of the
same size as the in-plane radius of the brass scatterer.
As in most experiments [1,2], we also only have access

to a subpart of the entire scattering matrix. Specifically, we
can measure only the 10 × 10 transmission matrix t, where
the complex matrix elements tji stand for the transmission
of the ith antenna of the input antenna array to the jth
position of the movable antenna at the output. Even for
flux-conserving scattering (without gain or loss), the t
matrix is generally nonunitary, since the reflected part of
the incident wave is not contained in t. The derivation of
Eq. (2) can, however, be easily adapted by replacing S with
t and ω with yb in Eq. (1) (see also Ref. [44]). Most
importantly, the resulting non-Hermitian GWS operator,

qyb ≔ −it−1
dt
dyb

; ð4Þ

inherits the property from its Hermitian counterpart Qyb
that its eigenstates are invariant with respect to a small
change in the parameter yb. In contrast to eigenstates of
Qyb , the eigenstates of qyb feature injection only from one
lead, i.e., u⃗n → u⃗n;L. The transmitted state, i.e., the out-
going state to the right, can be calculated via v⃗R ¼ tu⃗L.
Specifically, when adapting Eq. (2) to feature the complex
eigenvalues ϑybn ¼ βybn þ iκybn of qxb , we have for the
corresponding transmitted states

v⃗n;Rðyb þ ΔybÞ ≈ eðiβ
yb
n −κybn ÞΔyb v⃗n;RðybÞ: ð5Þ

Since the construction of the operator qyb involves only the
transmission matrix (the reflected part is omitted), its
complex eigenvalues ϑybn no longer correspond directly
to the local momentum shift Δkb at the brass scatterer (see
details in the Supplemental Material [38]). We do find,
however, that a strong correlation between these two
quantities persists (see Fig. S3 in Ref. [38]). Since this
trace in the transmitted signal appears both in the phase and
amplitude of a qyb eigenstate as measured, respectively, by
the real (βybn ) and imaginary (κybn ) parts of ϑ

yb
n , we work with

the absolute value of ϑybn to quantify it. A more detailed
analysis [38] shows that the correlation between jϑybn j and
jΔkbj can be further increased by normalizing the latter
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term with the transmission (i.e., by working with
jΔkbj=jt2j). We can thus apply the concept we derived
for the Hermitian GWS operator Qyb also to its non-
Hermitian counterpart qyb with the essential difference
being that the eigenvalues are now complex and sorted by
their absolute value.
Following this protocol also in the experiment, we first

measure the transmission amplitudes tji for two slightly
different transverse positions of the brass scatterer ð�ΔybÞ.
We then determine the GWS operator qyb by replacing the
derivative in Eq. (4) with a finite-difference approximation
based on the difference between the two prior transmission
matrix measurements. In the next step, we evaluate the
eigenstates of qyb and inject them directly through the
antenna array at the input port. To test if our focusing
protocol works successfully, we then measure the intensity
distribution of the microwave field in the vicinity of the
brass scatterer by an additional scanning antenna. This
antenna is attached to a movable arm and enters through a
grid of holes (grid spacing 5 mm × 5 mm, hole diameter
2 mm) in the top plate of the waveguide (extending 3 mm
into the cavity). The obtained intensity distributions for the
eigenvectors with the three largest and the three smallest
eigenvalues (in absolute magnitude) are shown in Figs. 2
and 3, respectively. The displayed intensity profiles dem-
onstrate very clearly that the largest eigenvalues correspond
to states focusing on the target, see top row in Fig. 2. The
eigenstates with the smallest eigenvalues, in turn, produce
intensity patterns which are reduced almost to noise level in

the vicinity of the target, see top row in Fig. 3. As an
additional test of our protocol, we also recorded the wave
intensity patterns after removing the brass scatterer alto-
gether. In the case of the focusing states such an inter-
vention drastically changes the overall configuration of the
intensity profiles, with intensity maxima near the position
of the removed scatterer remaining clearly visible, see
bottom row in Fig. 2. In the case of the states that avoid the
brass scatterer, the wave intensity pattern remains almost
unchanged as a whole when the scatterer is removed, see
bottom row in Fig. 3. For the sake of clarity we emphasize
here that the measurement of the intensity distribution in
the interior of the investigated system serves only for
demonstration purposes and is not necessary for imple-
menting our protocol in the first place.
To summarize, we present here an extension of the

Wigner-Smith time-delay operator to a whole class of
operators with the exciting property of providing eigen-
states that focus on or avoid a designated target inside a
disordered medium. These generalized Wigner-Smith oper-
ators require the information stored in a system’s scattering
matrix as measured already in acoustics [45], seismology
[46], and recently also in optics [1,2]. As a “guidestar” [47]
for focusing deep in the multiple scattering regime, we use
a movable scatterer inside the medium whose spatial shift
leaves conspicuous traces in the measured transmission
matrix that we exploit for our protocol. In the practical
applications that we envision for future implementations,
the spatial shift of the target scatterer could, e.g., result from
the self-propelled movement of an object inside an other-
wise static medium or be excited from the outside through
an ultrasound focal spot that can be conveniently scanned
through the medium (see Refs. [18,20] for recent imple-
mentations and Ref. [47] for a review). Our approach has
the advantage that it works without phase conjugation and
that the degree of focusing can be tuned up to the point
where a target inside a medium can be entirely avoided
rather than focused on. These features may be attractive for

FIG. 2. Measured spatial distribution of the microwave inten-
sity (see Supplemental Material [38]) inside the disordered
scattering system realized in the experiment. The region shown
is a zoom on the vicinity of the movable brass scatterer in the
middle (as highlighted in the top panel of Fig. 1). In the top row
this brass scatterer is included and in the bottom row it is
removed. In both cases we display the eigenstates of qyb with the
largest eigenvalues jϑybn j ¼ 96.9, 81.6, and 66.9 [a.u.] from left to
right. We can clearly observe that the intensity distribution is
enhanced in the region around the brass scatterer (top row), such
that removing the scatterer changes the intensity pattern strongly
(bottom row). In each of the plots (also in Fig. 3) the color scale
has been adjusted to match the maximum intensity (shown in
dark red).

FIG. 3. Same as Fig. 2, but for the eigenstates of qyb with the
smallest eigenvalues jϑybn j ¼ 1.9, 2.1, and 6.0 [a.u.] from left to
right. The measured intensity pattern clearly avoids the brass
scatterer in the middle (top row), such that removing the scatterer
leaves the intensity pattern almost unchanged (bottom row).
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novel imaging techniques in disordered media [48–50],
including the case where certain parts of an imaged tissue
should not get exposed to radiation. While the presented
experiment using ten guided modes serves as a proof-
of-principle demonstration, we expect that the full potential
of our method can be exploited once many modes are
accessible as in the optical domain [3,4], see Figs. S4-S7
in Ref. [38].
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