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We demonstrate control of a trapped-ion quantum harmonic oscillator in a squeezed Fock state basis,
using engineered Hamiltonians analogous to the Jaynes-Cummings and anti-Jaynes-Cummings forms. We
demonstrate that for squeezed Fock states with low n the engineered Hamiltonians reproduce the

ffiffiffi
n

p
scaling of the matrix elements which is typical of Jaynes-Cummings physics, and also examine deviations
due to the finite wavelength of our control fields. Starting from a squeezed vacuum state, we apply
sequences of alternating transfer pulses which allow us to climb the squeezed Fock state ladder, creating
states up to excitations of n ¼ 6 with up to 8.7 dB of squeezing, as well as demonstrating superpositions of
these states. These techniques offer access to new sets of states of the harmonic oscillator which may be
applicable for precision metrology or quantum information science.
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The control of quantum harmonic oscillators has played
a prominent role in the development of quantum state
control [1,2]. A single quantum oscillator provides access
to a Hilbert space with a dimension which increases rapidly
as the oscillator energy increases. It is also an example of a
system which has a natural transition from the quantum to
the classical regimes. One of the primary methods for
performing control and measurement of quantum harmonic
oscillator states is by coupling the oscillator to a single spin
using a Jaynes-Cummings Hamiltonian,

ĤJC ¼ ℏΩ=2ðâ†σ̂−eiϕ þ H:c:Þ; ð1Þ
where Ω and ϕ are real constants, â† and â are the creation
and annihiliation operators of energy quanta for the
oscillator, and σ̂− ¼ j↓ih↑j, with σ̂þ ¼ σ̂†−. j↑i, j↓i are
energy eigenstates of the spin. The Jaynes-Cummings
Hamiltonian arises naturally for cavity-QED systems [3]
and can be implemented straightforwardly with trapped
ions by using a laser to resonantly drive a motional
sideband of an internal state transition [2,4,5]. For an
ion starting in one of the basis elements j↓ijni, where jni
are the energy eigenstates of the oscillator, evolution as a
function of the duration t of the Hamiltonian ĤJC results in
Rabi oscillations between the two states j↓ijni ↔
j↑ijn − 1i, which can be viewed as a rotation Rðθ;ϕÞ ¼
cosðθ=2ÞÎ þ i sinðθ=2Þ½cosðϕÞŝx − sinðϕÞŝy�, where θ ¼
Ω

ffiffiffi
n

p
t and Î, ŝx, ŝy are Pauli operators that act in the basis

fj↓ijni; j↑ijn − 1ig. These Rabi oscillations can be
observed by making projective measurements on the spin
states of the ion as a function of the duration of the applied
Hamiltonian. An important feature is that the Rabi fre-
quency of the oscillations scales with the matrix element
hn − 1jâjni ¼ ffiffiffi

n
p

. This has played an important role in the
diagnosis of energy distributions of various well-known
oscillator states which are not energy eigenstates [1]. The
use of coupling to a two-state system isolates pairs of states

of the oscillator, which simplifies the dynamical evolution
and allows simple prescriptions for creating arbitrary
superpositions of states [6–8].
Although the Jaynes-Cummings Hamiltonian arises

naturally in the light-matter interaction, similar physics
can be observed for any Hamiltonian of the form

Ĥ− ¼ ðℏΩ−=2Þ½K̂σ̂þeiϕ þ H:c:�; ð2Þ
where K̂ is a non-Hermitian operator acting on the
oscillator for which the commutation relation ½K̂; K̂†� ¼
1 holds. These operators then create and annihilate exci-
tations on a Fock state ladder which is not the energy
eigenbasis. Creation and annihilation operators of this type
can be obtained by making a unitary transformation such
that K̂ ≡ Û â Û†, with the corresponding Fock state ladder
given by Ûjni. Since Û is unitary, the commutation relation
is preserved and the matrix elements follow the same
scaling with excitation number n as for the energy
eigenstates, namely that

hn − 1jÛ†K̂ Û jni ¼ ffiffiffi
n

p
: ð3Þ

These observations allow all elements of control devised
for the Jaynes-Cummings Hamiltonian to be directly
applied in the new basis, so long as the operators K̂ can
be implemented in the laboratory. Similarly, Ĥþ ¼
ðℏΩþ=2Þ½K̂†σ̂þeiϕ þ H:c:� is analogous to the anti-
Jaynes-Cummings Hamiltonian. One class of unitary trans-
formations that can be easily generated in the laboratory
using trapped ions involves combinations of quadrature
squeezing and displacements. These lead to operators of the
form K̂ ¼ μâþ νâ† − α, and thus both Ĥ− and Ĥþ can be
produced by using multichromatic laser fields that simul-
taneously drive both the carrier transition j↑i ↔ j↓i and
the first motional sidebands j↑ijni ↔ j↓ijn� 1i. In earlier
work, we used this observation to demonstrate reservoir
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engineering for the creation of squeezed and displaced
vacuum states, which can be viewed as cooling to the
ground state of a given engineered basis. We also showed
how the use of Ĥþ provides a simple diagnosis that the
ground state had been produced [9]. More recently, we used
the predicted

ffiffiffi
n

p
scaling of Rabi oscillation frequencies

produced by Ĥþ to reconstruct Schrödinger’s cat states of a
motional oscillator which were beyond the range of
standard methods which use only an energy-eigenstate
decomposition [10].
In this Letter, we demonstrate coherent control of a

trapped-ion oscillator on an engineered squeezed Fock state
ladder [11–14]. We apply sequences of pulses on both Ĥ−
and Ĥþ to climb the state ladder, starting from the relevant
ground state. We verify that the generated states are
squeezed Fock states by extracting their number state
distribution in the energy eigenbasis, and demonstrate that
the Jaynes-Cummings analogy is valid by verifying the

ffiffiffi
n

p
scaling of the Rabi frequency with respect to the excitation
of the basis states. We observe deviations from

ffiffiffi
n

p
scaling

which are consistent with the finite Lamb-Dicke parameter
used in our experiments. Finally, following the methods of
Law and Eberly [6] and earlier experimental work [7]
performed in the energy-eigenstate basis, we use the
engineered Hamiltonians to produce a coherent super-
position of two Fock states of the squeezed state basis,
and verify the key features of this state.
The experiments work with the axial mechanical oscil-

lations of a single 40Caþ ion trapped in a microfabricated
ion trap with a secular frequency of ωz=ð2πÞ ¼ 2.07 MHz.
Spin-motion Hamiltonians make use of a two-level pseu-
dospin defined as j↓i≡ jL ¼ 0; J ¼ 1=2;MJ ¼ 1=2i and
j↑i≡ jL0 ¼ 2; J0 ¼ 5=2;M0

J ¼ 3=2i. Coupling between
spin and motion is implemented using a narrow-linewidth
laser at 729 nm with a k vector at 45 deg to the axial
oscillation direction, resulting in a Lamb-Dicke parameter
of η ≈ 0.05. Working in a squeezed Fock basis requires
implementing Hamiltonians generated from ĤJC using the
squeezing operator Û ¼ ŜðζÞ≡ exp ½ðζâ†2 − ζ�â2Þ=2�,
where ζ ¼ reiϕ, with r and ϕ real numbers that relate to
the magnitude and phase of squeezing. To implement a
Hamiltonian of the Jaynes-Cummings type, we apply Ĥ−
with K̂ ¼ ŜðζÞâŜ†ðζÞ ¼ coshðrÞ½âþ tanhðrÞeiϕs â†�. This
can be produced by simultaneously driving the blue
motional sideband [Ĥb ≡ ðℏΩb=2Þ½â†σ̂þeiϕb þ H:c:�] and
red motional sideband [Ĥr ≡ ðℏΩr=2Þ½âσ̂þeiϕr þ H:c:�],
and choosing the Rabi frequency ratio Ωb=Ωr ¼ tanhðrÞ
and a well-defined relative phase ϕs ¼ ϕb − ϕr. In what
follows, the relevant state ladder will be written as jζ; ni≡
ŜðζÞjni.
The initial step of each experiment involves initialization

of the oscillator into the ground state of the squeezed basis
by reservoir engineering [9,15], which can be viewed as a
modification of sideband cooling implemented by a

combination of applying the engineered Hamiltonian Ĥ−
and optical pumping from j↑i to j↓i. In the ideal case, the
oscillator steady state of this process is the squeezed
vacuum state jζ; 0i. We verify the amount of squeezing
by measuring the energy-eigenstate occupations, and fitting
these with the expected form for a squeezed state. This
measurement is performed by switching on the blue-side-
band Hamiltonian for a probe time tp, and subsequently
measuring the spin state. The probability of observing spin
j↓i in this measurement is given by

Pð↓; tpÞ ¼
1

2

X

k

pðjkiÞ½1þ γðtÞ cosðΩk;kþ1tpÞ�; ð4Þ

where pðjkiÞ is the probability that the motion started in the
kth energy-eigenstate state prior to the probe pulse. In the
Lamb-Dicke regime, the motion-dependent Rabi frequen-
cies are given by Ωk;kþ1 ¼

ffiffiffi
k

p
Ωb. For the data presented

below, we used r≃ 1, which for an ideal squeezed vacuum
state would correspond to a reduction in the quadrature
variance in the squeezed direction of 8.7 dB.
In order to prepare the first excited state of the squeezed

Fock state ladder jζ; 1i, we use Ĥþ to drive Rabi oscillations
on the transition j↓ijζ; 0i ↔ j↑ijζ; 1i. At time t1 ≃ π=Ωþ,
the spin state is fully inverted, and simultaneously the
motional state is transferred from jζ; 0i → jζ; 1i (finite
switching times of optical components mean that the
inversion time t1 is not exactly equal to π=Ωþ). With the
ion in the state j↑ijζ; 1i, we then proceed to create jζ; 2i
in an analogous fashion. Since the ion starts in the j↑i state,
we now apply Ĥ− in order to drive the transition
j↑ijζ; 1i ↔ j↓ijζ; 2i. By calibrating the time for which a
full spin transfer is achieved and fixing the pulse length to
this time, we create the squeezed Fock state jζ; 2i. By
alternating between transfer pulses performed on Ĥþ and
Ĥ−, we are able to climb the Jaynes-Cummings state ladder,
as was performed previously for energy eigenstates [4].
To verify that the states we produce are consistent with

squeezed Fock states, we extract the energy-eigenstate
populations for each using blue-sideband Rabi oscillations.
The extracted motional state populations for states up to
k ¼ 30 and n up to 3 with r ¼ 1.00� 0.03 are shown in
Fig. 1, showing agreement with the predictions for the
squeezed Fock states jζ; ni for r ¼ 1. A clear feature of the
squeezed Fock states is their parity hP̂i ¼ P

kð−1ÞkpðjkiÞ,
for which we obtain values 0.99� 0.14, −1.02� 0.09,
0.87� 0.07, and −0.45� 0.06, for n ¼ 0, 1, 2, 3, respec-
tively. These are negative for the odd squeezed number
states and vice versa. This is expected since the squeezing
operator preserves parity. For higher n, the agreement
between the extracted motional state populations and the
theoretical expectations becomes less good. We think that
this is primarily a problem of the reconstruction method.
The blue-sideband technique relies on separating out
different oscillation frequencies in the time evolution of
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the spin population versus time. For higher k, the approxi-
mate

ffiffiffi
k

p
scaling of the matrix elements means that

neighboring Fock states produce similar Rabi frequencies,
which require a large number of Rabi oscillations to be
resolved. This is challenging because of fluctuations in the
laser intensity driving the transition, which limit the
number of oscillations for which a high oscillation contrast
can be observed.
An important feature of Jaynes-Cummings physics is theffiffiffi
n

p
scaling of the matrix elements given in Eq. (3), which is

proportional to the Rabi oscillation frequency of transitions
between the neighboring squeezed Fock states. In order to
measure this in our experiments, we use a pulse of length
t ≫ π=Ω� to drive many cycles of Rabi oscillation for
each of the transitions j↓ð↑Þijζ; ni ↔ j↑ð↓Þijζ; nþ 1i,
and extract the Rabi frequency by fitting the function
½1þ e−γ

2t2 cosðΩtÞ�=2 with γ and Ω floated parameters.
For each transition between neighboring oscillator states,
Rabi oscillations are possible using either Ĥþ or Ĥ−. Since
the laser settings used for both Hamiltonians are different, it
is challenging to set exactly the same Rabi frequency for
Ω− and Ωþ, respectively. To overcome this problem, we
extract the Rabi frequency for both Ĥþ and Ĥ− for
each motional state transition. For j↓ijζ; 0i ↔ j↑ijζ; 1i,
the measurement of Ĥþ is performed as before. Measure-
ment of Ĥ− on j↑ijζ; 0i ↔ j↓ijζ; 1i is performed by
driving Rabi oscillations after first transferring population
from j↓ijζ; 0i to j↑ijζ; 0i using a carrier π pulse. For
measurements of the Rabi frequencies between higher
motional levels, sequences of alternated transfer pulses
on Ĥþ and Ĥ− are used to prepare the starting state prior to

driving the measured Rabi oscillations. Two examples of
observed Rabi oscillations are plotted alongside the scal-
ings extracted from data in Fig. 2. Also plotted in Fig. 2(b)
is a theoretical curve for

ffiffiffi
n

p
Ωs with Ωs obtained from the

mean of the j↓ð↑Þijζ; 0i ↔ j↑ð↓Þijζ; 1i Rabi frequencies
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FIG. 1. Energy-eigenstate populations of (a) jζ; 0i, (b) jζ; 1i,
(c) jζ; 2i, and (d) jζ; 3i. The height of the yellow bars indicates
the probability of finding the ion in the nth energy eigenstate,
with error bars included as standard error on the mean extracted
from fits. The blue points indicate the expected populations for
the squeezed Fock states with r ¼ 1. As can be seen from the
increased error bars, for Fock states above k ¼ 16, it is difficult to
separate contributions of neighboring states. This is due to the
limited number of Rabi oscillations that we can perform in our
experiment and the reduced separation between the Rabi oscil-
lations on neighboring energy eigenstates.
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FIG. 2. Rabi frequency scaling in the squeezed Fock basis.
(a) Example data with Rabi oscillation fits using a Gaussian
decay to the spin populations versus time for (i) the j↑ijζ; 0i ↔
j↓ijζ; 1i and (ii) the j↓ijζ; 5i ↔ j↑ijζ; 6i transitions. (b) The
measured ratio Ωn;n−1=Ω0 obtained from similar data for
squeezed Fock states up to n ¼ 7 with r ¼ 1. Squares are
measurements made using Ĥþ and circles for Ĥ−. Theoretical
curves are also plotted for

ffiffiffi
n

p
(dashed line) and for the modified

theory taking into account the finite Lamb-Dicke parameter (solid
line). (c) A plot of measured Ωn;n−1=Ω0 −

ffiffiffi
n

p
, showing the

deviations from the
ffiffiffi
n

p
behavior. The statistical error bars do not

account for the deviations of the measurement from the theory
(solid line), indicating that the error sources are primarily
systematic. In simulations, we see that a finite detuning between
half the difference frequency of the lasers and the trap frequency
increases the Rabi frequency (see Supplemental Material for
more details [16]). For comparison, the dotted curve indicates the
matrix elements for the nth state of the energy eigenbasis for the
same Lamb-Dicke parameter.
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for each Hamiltonian. While the trend of the Rabi oscil-
lations is similar to the expected

ffiffiffi
n

p
scaling, the results do

not agree to within experimental errors. The deviation of
the data from the

ffiffiffi
n

p
theory is shown in Fig. 2(c), along

with a curve which accounts for the resonant term in the
ion-light interaction to all orders of the Lamb-Dicke
parameter. The latter clearly shows better agreement with
the experimental data. For comparison, the standard scaling
of the Lamb-Dicke correction for the energy eigenstates is
also plotted in Fig. 2, showing that, due to the higher
energies of the squeezed Fock states for a given n, the
correction factor is larger.
One notable feature that is observable as we ascend the

ladder of states is that the coherence of the Rabi oscillations
is reduced. This is an effect which might be expected due to
heating [9,17] or due to trap frequency fluctuations. At
n > 3 we observe that the data show a persistent low
amplitude oscillation which extends beyond the decay
envelopes which fit the early time part of the data for both
Gaussian and exponential models of decay. Such an effect
can be seen clearly in the data for the n ¼ 5 ↔ 6 flopping
given in Fig. 2(a). We see that this behavior is consistent
with models that include a frequency offset of the differ-
ence frequency of the red- and blue-sideband laser beams
from the trap frequency, plus fast trap frequency fluctua-
tions of a few hertz. As is discussed in more depth in the
Supplemental Material [16], the sensitivity of the squeezed
Fock states depends on both the level of squeezing and
the excitation number, and is significantly enhanced for
higher n.
The toolbox of Jaynes-Cummings physics demonstrated

above allows not only eigenstates of the chosen basis to be
created, but also superpositions of those eigenstates. In order
to demonstrate this, we create an equal superposition of
jζ; 0i and jζ; 2i. Starting from the squeezed ground state, we
apply a pulse of duration t1=2 on Ĥþ, resulting in the
rotation Rþðπ=2; 0Þ acting now on the squeezed Fock
states, which creates the equal superposition ðj↓ijζ; 0iþ
j↑ijζ; 1iÞ= ffiffiffi

2
p

. This is followed by a pulse with duration t2
using Ĥ−, which performs a θ ¼ π rotation which transfers
j↑ijζ; 1i → j↓ijζ; 2i, thus producing the desired superpo-
sition state jψ si ¼ j↓iðjζ; 0i þ eiϕs jζ; 2iÞ= ffiffiffi

2
p

. The phase
ϕs is imposed by the laser phase, along with systematic ac
Stark shifts during the creation of the state. We analyze jψ si
using three methods. First, we obtain the motional state
occupations in the squeezed Fock state basis, by repumping
the spin and subsequently measuring the population of the
j↑i state as a function of the duration tp of a pulse on Ĥþ.
Experimental results are shown in Fig. 3(a), showing clearly
that the dominant motional eigenstates are jζ; 0i and jζ; 2i.
In Fig. 3(b) we show the results of the number state
decomposition in the energy-eigenstate basis using the blue
sideband, which is sensitive to the relationship between the
squeezing axis and the phase relationship of the two states.

Finally, we examine the phase coherence between the two
states of the superposition, by applying sequentially a θ ¼ π
rotation on Ĥ− followed by a θ ¼ π=2 pulse on Ĥþ with a
phase ϕa. We measure the final spin state as a function of
the phase ϕa. In an ideal realization the probability to find
the ion in j↓i would follow Pð↓Þ ¼ ½1þ cosðϕa − ϕsÞ�=2.
Data from such a scan are shown in Fig. 3(c), and show
a sinusoidal oscillation as a function of phase, but with
a reduced contrast which we extract by fitting to be
91� 1%. This reduced coherence is due to imperfections
in our experiment, including imperfect calibration and
decoherence during the protocol. Nevertheless, we observe
clear evidence for high coherence of the superposition.
The increasing sensitivity and accessibility of the

squeezed Fock states as a function of both squeezing
and the excitation number means that these states offer
possibilities for achieving sensitivities exceeding that of
either the energy eigenbasis or the squeezed vacuum alone.
This could offer advantages, e.g., for tests of quantum
gravity theories [18]. Combining the preparation of
squeezed Fock superposition states with optical pumping
of the spin would also allow the production of mixed
states of the squeezed basis, with possible applications in
demonstrations of the enhancement of thermodynamic
processes [19].
The methods presented in this Letter can be easily

adapted to prepare displaced squeezed Fock states by
adding a carrier tone to the used Hamiltonians [9]. The
ability to choose the basis in which Jaynes-Cummings
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FIG. 3. Measurements performed on a superposition of
squeezed Fock states. (a) Population analysis in the squeezed
Fock basis, with pðnÞ close to 0.5 for both n ¼ 0 and n ¼ 2. The
bar heights and error bars are extracted from fits to Rabi
oscillation data with the Ĥþ Hamiltonian. Blue points are the
expected values for the desired superposition. (b) Energy-
eigenstate population analysis, showing that the primary occu-
pied levels are those with even parity. (c) Population of the ↓
internal state as a function of the phase ϕa of a red-sideband
analysis pulse, indicating the phase coherence between the
superposed states. The contrast gives a lower bound on the
fidelity of the superposition state.
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physics can be applied adds significant flexibility to the
manipulation of quantum oscillators, although further
theoretical work is needed to identify the optimal use of
these methods. Non-Gaussian and squeezed states have
been proposed previously as a resource for continuous-
variable quantum computation [20,21] and in hybrid
continuous-discrete approaches [22]. Our methods provide
new possibilities for creating, controlling, and measuring
states with similar features.
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