
Physically Realizable Space for the Purity-Depolarization
Plane for Polarized Light Scattering Media

Aziz Tariq,1,2 Pengcheng Li,1,2 Dongsheng Chen,1,2 Donghong Lv,1,4 and Hui Ma1,2,3,*
1Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing,

Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
2Department of Physics, Tsinghua University, Beijing 100084, China

3Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518071, China
4Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China

(Received 16 February 2017; published 21 July 2017)

We propose a physically realizable space for the polarized light scattering measurement using the Stokes-
Mueller formalism by a purity-index–depolarization-index (PI − PΔ) plane. The parameter PI is defined from
indices of polarimetric purity (IPP), which exhibits the overall magnitude of the polarimetric randomness of a
medium,while the depolarization index (PΔ) delineates a proper global degree of polarimetric purity andmay
also refer to the average measure of depolarization power of the scattering medium. Subregions and curves
connecting the edge points in the plane are obtained by imposing certain constraints on the IPP; consequently
any point on the subregion indicates the information related to a decomposition of the Mueller matrix into its
components as a convex sum. From the same set of constraints, complete information about the depolarization
index versus the entropy [SðMÞ − PΔ] diagram is recovered. This work provides a simple geometric
representation and a deeper perceptivity of the light scattering media comprising depolarization.
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Introduction.—Polarized light scattering measurements
have played a central role in understanding the microscopic
specific features of a medium and caused a lot of interest in
several fields of science and technology such as astronomy,
metrology, and biomedical optics [1–3]. When polarized
light interacts with a medium, it may suffer multiple
scattering and subsequently gets partially or fully depolar-
ized. The depolarization behavior of light can bewell studied
through the Stokes-Mueller formalism, and the so-called
depolarization index (or the degree of polarimetric purity)
(PΔ) can be obtained fromelements of aMuellermatrixM of
the medium [4]. PΔ can have a maximum value of 1, which
shows that there is no change in the degree of polarization
of incident light after the interaction, while the minimum
value of 0 corresponds to a complete depolarization. From
M, a Hermitian covariance matrix (H) can be constructed
whose eigenvalues are used to calculate the polarization
entropy (SðMÞ), which provides information about the
average entropy added to the field after the interaction
with the medium. The polarization entropy has a range of
0 ≤ SðMÞ ≤ 1. The maximum can be associated to a
complete depolarization, whereas the minimum value can
be related to a pure Mueller matrix [2,5–7].
A physical bound to the SðMÞ − PΔ relation based on

random uniform distributions of the normalized eigenval-
ues of H was given by Aiello and Woerdman [7].
Analytical expressions for curves joining the cusps in
the plane were derived. Experimental confirmation for
Ref. [7] was presented [8] by measuring the M of a large
class of scattering media in forward detections. The
experimental data filled in all the regions except a sub-
region that remained empty [8]. An alternate approach to

characterize the universality in depolarized light scattering
was published [9] by a simulation based on the statistical
properties of M to recover the experimental distribution in
SðMÞ − PΔ plane. An attempt was made to explain the
empty region by imposing a physical criterion that the
region may be represented by a region of “anomalous
depolarization” defined as both the cross-polarization ratios
greater than 1. However, this criterion was not a universal
constraint, also pointed out by the authors [9]. On the other
hand, three invariant “indices of purity” (IPP) were defined
[2,10,11] from the eigenvalues of H to describe the
information relevant to the polarimetric randomness (or,
conversely, purity) of the medium for the four-dimensional
(4D) polarized light, and a three-dimensional plot for a
feasible region called the 4D purity space was formed.
Recently, another illustration, namely, the “purity figure”
based on the degree of polarizance and the degree of
spherical purity was studied [12] for the description of the
polarized light scattering from media.
In this Letter, a scalar parameter named the overall purity

index (PI) is defined from the IPP and the 4D purity space,
which can be related to the overall magnitude of purity of the
medium. Since PI is a multivalued function of PΔ, thus a
physically realizable two-dimensional PI − PΔ plot for all
the light scattering media is generated. The “trivial” or
“characteristic decomposition” (CD) of the M in which
the coefficients of the mutually incoherent components are
given in terms of the IPP [11] is employed to designate the
subregions and the curves of the plane as a linear combina-
tion of the components of M. Furthermore, Monte Carlo
simulations based on a sphere model in both the forward and
backscattering detections [13–16] for spheres with varying
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sizes and scattering coefficients in the Mie regime are
employed to correlate the simulation results to the descrip-
tions of the subregions in terms of the IPP and CD.
The purity-depolarization plane.—For a quasimonochro-

matic optical field of zero-mean variable that can be
considered as an ergodic stochastic stationary process (at
least in the wide sense) whose direction of propagation is
constant in time at a point r and with a Gaussian spectral
profile such that the second order statistical moments are
sufficient, a two-dimensional (2D) positive semidefinite
(PSD) coherency matrix (Φ2) is ciphered for the complete
description of the two-dimensional (2D) polarized light
[2,6,17,18]. In the 2D description of the polarized light, it is
considered that the polarization ellipse may change uni-
formly or randomly but remains fixed in a plane with
constant direction of propagation. If the direction of
propagation is not fixed, a three-dimensional (3D) polar-
ized light is considered, whose associated PSD covariance
matrix is the three-dimensional (3D) coherency matrix (Φ3)
[2,18]. Usually, a dimensionless density matrix is used via
considering DN ¼ ΦN

trðΦNÞ, where N is the dimension of the

matrix, with “tr” standing for the trace [18]. The density
matrix can be represented in terms of the Stokes param-
eters. In general, a 4 × 4 Mueller matrix M of the medium
is used to describe the transformation of a Stokes vector of
the polarized light interacting with the scattering medium.
A four-dimensional (4D) coherency matrix C and the
covariance matrix H can be constructed from elements
of the M via exploiting their Hermiticity and symmetry
properties [2,19]. Both matrices are PSD, and are related
through unitary transformation. The covariance matrix is
written as H ¼ 1

4

P
4
μν¼1mμνEμν, where mμν are the ele-

ments of theM, andEμν are the 16 modified Dirac matrices
[2]. Moreover, any physically realizable M that contains
depolarization can be decomposed up to four passive
Mueller-Jones matrices (MJi) as M ¼ P

4
i¼1 λiMJi

[20,21]. For a Mueller matrix M, ∀ χi and ψ i (ellipticity
and orientation angles of polarization ellipse) such that the
gain constraint [0 ≤ gðχi;ψ iÞ ≤ 1] and the polarization
constraint [0 ≤ Poðχi;ψ iÞ ≤ 1] are satisfied [6]. A
Mueller matrix is considered as a physically realizable
M, if the eigenvalues of the HðMÞ are positive (Cloude
criterion) [22] and the gain constraint is satisfied in both the
forward and reverse directions [23]. Additionally, the three
invariant “indices of polarimetric purity” (IPP) are defined
as P1 ¼ ½ðλ1 − λ2Þ=trðHÞ�, P2 ¼ ½ðλ1 þ λ2 − 2λ3Þ=trðHÞ�,
and P3 ¼ ½ðλ1 þ λ2 þ λ3 − 3λ4Þ=trðHÞ� (trðHÞ ¼ m11 ¼ 1

for a normalized M with
P

4
i¼1 λi ¼ 1) [10,11]. From the

eigenvalue spectrum of theH in the form λ1 ≥ λ2 ≥ λ3 ≥ λ4
the following inequality is obtained:

0 ≤ P1 ≤ P2 ≤ P3 ≤ 1. ð1Þ

Furthermore, M can be decomposed into a linear
combination of a pure and depolarizing Mueller matrices

in a form called characteristic decomposition (CD) [2,11].
The CD of a normalizedM in terms of the IPP is written as

M ¼ P1ðMJ1Þ þ ðP2 − P1ÞM2 þ ðP3 − P2ÞM3

þ ð1 − P3ÞM4: ð2Þ
Here, MJ1 is the Mueller-Jones matrix, which is con-
structed by considering H such that it contains only one
eigenvalue in the spectral decomposition. Similarly, M2,
M3, and M4 are the 2D, 3D, and complete (4D) depolar-
izers obtained by considering an equal probable mixture of
the two, three, and all the four eigenvalues of H of M,
respectively. Moreover, P1 can be inferred as the degree of
polarization of M such that it is the relative portion of the
system that can be considered MJ1 in the CD. On similar
footings, P2 and P3 are associated with the degree of 2D
and 3D polarizations of the M in the CD [2]. It is worth
mentioning that the Cloude criterion with the CD can be
exploited for the noise filtering in the measurements [24].
Based on the description of the IPP, a quantity of the overall
purity index with equal weights in the quadratic average to
measure the overall purity of the medium is defined as

PI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2

1 þ P2
2 þ P2

3Þ
3

r

: ð3Þ

The range of PI is 0 ≤ PI ≤ 1. The minimum value of
PI represents a Mueller matrix of a complete depolarizer
(M4: 4D depolarizer) with only the first element m11 equal
to 1 and the rest of all being zero, while the maximum value
of the PI, i.e., 1 is for a pureM (MJ, Mueller-Jones matrix).
PΔ can also be expressed in terms of the IPP as [2],

PΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
2P2

1 þ
2

3
P2
2 þ

1

3
P2
3

�s

: ð4Þ

Since the PI and PΔ are functions of the IPP together with
the inequality [Eq. (1)], and considering a random uniform
distribution of the IPP, a two-dimensional physically realiz-
able space for all the light scattering media is generated
[Fig. 1(a)]. In lieu, PI ¼ PI (PΔ, Pα) as a multivalued
function of PΔ can be expressed to generate the same plot,
where Pα is a combination of the remaining two IPP after
eliminating any one of the IPP. Subregions in Figs. 1(a)
and 1(b) (regions I, II, III, and IV) of the planes are separated
by curves that are generated by imposing certain constraints
(listed in Table I) on the IPP in Eqs. (3) and (4). The
constraints on the IPP for producing the feasible subregions
are given in Table II. Interestingly, SðMÞ can be expressed
as SðMÞ¼−1

4
½fSAðlog4ðSAÞ−1ÞgþfSBðlog4ðSBÞ−1Þgþ

fSCðlog4ðSCÞ−1ÞgþfSDðlog4ðSDÞ−1Þg�, where SA ¼
1þ 2P1 þ 2

3
P2 þ 1

3
P3, SB ¼ 1 − 2P1 þ 2

3
P2 þ 1

3
P3, SC ¼

1 − 4
3
P2 þ 1

3
P3, and SD ¼ 1 − P3 [2,10]. Thus, from the

same constraints on the IPP, the SðMÞ − PΔ plane is
recovered as shown in Fig. 1(b) where the subregions and
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the curves are defined in terms of the IPP rather than the
anlytical expression given in Ref. [7].
The subregion I (area BCD) in Figs. 1(a) and 1(b), where

P3 ¼ 1, in whichM of a medium can be decomposed up to a
maximum of three pure Mueller matrices. From the CD
[Eq. (2)], the region I may contain MJ1, 2D, and 3D
depolarizers. Here, the contribution of the 4D depolarizer
(M4) is not included in the convex sum. This is evident from
the planes as the region is not connected to the point A in the
plane. The region II (the area ABC) is the region where
P1 ¼ 0 stipulates that the first two dominant eigenvalues of
the spectrum ofH are equal. The region can be decomposed
up to four pure matrices. By letting P1 ¼ 0 in Eq. (2), the
region can be characterized as a linear combination of 2D,
3D, and 4D depolarizers with no contribution from MJ1. In
region III,P1 ¼ P2, whereas in region IV, P2 ¼ P3. Mueller
matrices from the both regions can be decomposed up to four
components, with equal contributions of the second and third
components in region III, and the third and fourth compo-
nents in region IV. Again, by putting the constraints of
regions III and IV in Eq. (2), it is incurred that the former
represents a linear combination of the MJ1, 3D, and 4D
depolarizers and the latter is composed ofMJ1, 2D, and 4D
depolarizers. If the values of the IPP do not hold any of the
constraint (i.e., 0 < P1 < P2 < P3 < 1) of the points inside
the tetrahedron in the 4D space [10] then the inequalities will
become approximations. However, CD can still be applied to
provide the information about the relative portions of the
components of the system. IfP2 − P1 has a small magnitude
then the contribution fromM2 would be negligible, and ifP3

and P2 has a small difference, the contribution from M3

would be insignificant in the CD. The contributions ofMJ1
andM4 become small for the cases whenP1 andP3 are close
to 0 and 1, respectively. It is worth noting that pointsA,B,C,

and D can be represented by M4, M3, M2, and MJ1,
respectively, with an elegant geometrical representation if
one is missing in the subregion.
The CD provides an insight for the physical meaning of

the curves in the plane. For example, by letting P1 ¼ 0,
0 < P2 < 1, andP3 ¼ 1 in Eq. (2), it can be deduced that the
curveCBC represents a feasible region for the 3Ddepolarizer:
a polarization ellipse that is not fixed in a plane and changes
randomly. This could be bobbed up if an experimenter pays
attention to study the polarization phenomena in fluctuating
near fields and evanescent waves [10,18]. Note that the curve
CBC (for a mixed 3D polarization) is not connected to the
pointsA andD, and, hence, cannot bedecomposed into a pure
and unpolarized light [18]. The curve CAD is generated by
taking all the values of the IPP equally, and, hence, character-
izes a region that can be decomposed into a polarized and
unpolarized light such that P1MJ1 þ ð1 − P1ÞM4. It is an
isotropic curve, which is a lower bound to the values of PI
in the PI − PΔ plane with the unit slope and an upper bound
to SðMÞ in the SðMÞ − PΔ plane. The advantage of the
PI − PΔ plane over the SðMÞ − PΔ plane is to avoid the
logarithmic evaluation in the SðMÞmeasurement that can be
sometimes cumbersome in calculating SðMÞ for adjacent
n × nwindowsof everypixel,which can be in themillions for
the polarimetric synthetic aperture radar imaging [25] or in
polarized light tissue imaging [26].
The analysis for light depolarization by scattering media

via the PI − PΔ plane.—We discuss three cases of the
elastic light scattering from media for the analysis and
interpretation of the depolarization properties of the scat-
tering media in terms of the IPP and the CD: (a) an
experimentally measured Mueller matrixMa of a dielectric
underwater target [6,27]; and the two generic forms of
Mueller matrices for (b) identical spherical scatterers Mb

TABLE I. Curves connecting the edge points in the PI − PΔ plane and the cusps in the SðMÞ − PΔ plane.

IPP

Curves P1 P2 P3 CD PI

CAB 0 0 0 ≤ P3 ≤ 1 P3M3 þ ð1 − P3ÞM4 0 ≤ PI ≤ 1=
ffiffiffi
3

p
CBC 0 0 ≤ P2 ≤ 1 1 P2M2 þ ð1 − P2ÞM3 1=

ffiffiffi
3

p
≤ PI ≤

ffiffiffiffiffiffiffiffi
2=3

p

CCD 0 ≤ P1 ≤ 1 1 1 P1MJ1 þ ð1 − P1ÞM2

ffiffiffiffiffiffiffiffi
2=3

p
≤ PI ≤ 1

CAC 0 0 ≤ P2 ¼ P3 ≤ 1 P2M2 þ ð1 − P2ÞM4 0 ≤ PI ≤
ffiffiffiffiffiffiffiffi
2=3

p

CBD 0 ≤ P1 ¼ P2 ≤ 1 1 P1MJ1 þ ð1 − P1ÞM3 1=
ffiffiffi
3

p
≤ PI ≤ 1

CAD 0 ≤ P1 ¼ P2 ¼ P2 ≤ 1 P1MJ1 þ ð1 − P1ÞM4 0 ≤ PI ≤ 1

TABLE II. Subregions of the planes with the constraints on the IPP for PI − PΔ and SðMÞ − PΔ planes.

IPP

Regions P1 P2 P3 CD PI

I: Area BCD 0 ≤ P1 ≤ P2 ≤ 1 1 P1MJ1 þ ðP2 − P1ÞM2 þ ð1 − P2ÞM3 1=
ffiffiffi
3

p
≤ PI ≤ 1

II: Area ABC 0 0 ≤ P2 ≤ P3 ≤ 1 P2M2 þ ðP3 − P2ÞM3 þ ð1 − P3ÞM4 0 ≤ PI ≤
ffiffiffiffiffiffiffiffi
2=3

p

III: Area ABD 0 ≤ P1 ¼ P2 ≤ P3 ≤ 1 P1MJ1 þ ðP3 − P1ÞM3 þ ð1 − P3ÞM4 0 ≤ PI ≤ 1
IV: Area ACD 0 ≤ P1 ≤ P2 ¼ P3 ≤ 1 P1MJ1 þ ðP2 − P1ÞM2 þ ð1 − P2ÞM4 0 ≤ PI ≤ 1
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[6,27], which is a block diagonal Mueller matrix (with
m11 ¼ m22, m12 ¼ m21, m34 ¼ −m43, and m33 ¼ m44);
and (c) Rayleigh spheres with multiple scattering,
which is a diagonal matrix Mc ¼ diag½1; m22ðnÞ; m22ðnÞ;
m44ðnÞ�, where nþ 1 is the number of scattering events.
The detailed formulations of these Mueller matrices are
given in Refs. [6,28]. A set of matrices Mb are constructed
by generating random uniform numbers and satisfying
Eq. (1), whereas the set of Mc are obtained by considering
the values of n from zero to 16 (total of 160 points). The
points on the planes as shown in Figs. 1(a) and 1(b) are
obtained by calculating the values of the IPP from the
Mueller matrices.
The IPP spectrum of the Ma [0.4672, 0.4905, and

0.5636] indicates that P1 ≅ P2, thus lies in the region III
close to the curve CAD. Further employing the CD, it can be
deduced that the relative portions of the 2D and 3D
polarized light are very small; hence, depolarization in
Ma arises mainly due to the combination of MJ1 and the
4D depolarizer [6,27]. All the points for the Mb lie on the
curve CCD, except at the point C, and indicate that the Mb
is a Mueller-Jones matrix [6]. If the elements of theMb are
angle dependent, only the one point atD is observed, which
shows that these scatterers belong to the MJ1 at all angles
[6]. We then consider Mc, which is formulated by Bicout
and Brosseau [28] based on a maximum entropy principle.
It is displayed that all the points lie in the region III for
n ≥ 1, and in the region I for n ≤ 1, and move from the
points D to A monotonically by increasing n. When n goes
to large values (i.e., n ≥ 10), we observe that the values for
Mc reach closer to the 4D depolarizer (limn→∞Mc ¼ 4D)
that is consistent with the findings of Ref. [28].
Monte Carlo simulations based on the sphere model.—

We now conduct Monte Carlo (MC) simulations for
the propagation of polarized photons in both forward
and backward scattering with a model that contains

monodispersed spherical scatterers in the Mie regime.
The diameter d of the scatterers is increased for the
scattering coefficients (μs) of 5, 10, and 15 cm−1.
Details of the MC program are given in Refs. [13–16].
Approximately, 107 photons at 0.63 μm wavelength are
simulated with the medium of thickness 1 cm. The
refractive indices for the medium and the sphere scatterers
are 1.33 and 1.59, respectively. The preponderant forward
scatterings (red points) in Fig. 2 occupy region IV and
display a linear increase in the PI (or decrease in the entropy
of the scatterers [29]) for large diameters. However, the
backward scatterings (blue points) lie in the region II and
show some parametric curves for the values of PI to the
corresponding change in d, as shown in Fig. 2. It is
observed that the “empty” region encountered in Ref. [8]
is filled in for the backscattering spheres in the Mie regime.
Thence, the region is more appropriately characterized as
the region with 2D, 3D, and 4D depolarizations.

FIG. 1. Feasible spaces with curves for (a) the PI − PΔ plane with the edge points A (0, 0), B (1=3, 1=
p
3), C (1=

p
3,
pð2=3Þ), and D

(1,1). (b) The SðMÞ − PΔ plane with the cusp points A (0, 1), B [1=3,log4ð3Þ], C (1=
p
3,1=2), andD (1, 0). The regions I, II, III, and IV

are specified by the areas BCD, ABC, ABD, and ACD, respectively.Ma is the experimentally measured matrix, Ref. [27], whereasMb
and Mc are generated from the formulations given in Refs. [6,27,28].

FIG. 2. MC simulations for spherical scatterers in forward- (red
points) and backscattering (blue points) in the Mie regime
with diameters increased from 1.02 to 1.46 μm in steps of 0.03.
The scattering coefficients are 5 (square), 10 (triangle), and 15
(asterisk) cm−1. The increase in the size of the scatterer is shown
by increasing the size of the points.
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We have used the PI − PΔ plane because of its simple
geometric representation; however, one can use the
SðMÞ − PΔ plane equally. Then the plane would be
characterized by SðMÞ, PΔ, and the IPP as the relative
portions of the components of the system through CD.
Conclusion.—In summary, a 2D feasible (PI − PΔ) plot

is proposed for the description and characterization of
depolarization properties of the scattering media. Both PI
and PΔ are obtained from the indices of polarimetric purity
(IPP), which can be extracted from the eigenvalues of a
covariance matrix HðMÞ. The PI is defined as a quadratic
average of the IPP (with equal weights), which gives a
meaningful interpretation of the scattering subregions of
the plane. All the geometric properties of both the PI − PΔ
and SðMÞ − PΔ planes are directly determined in terms of
the values of the IPP. Furthermore, Monte Carlo simula-
tions show that the so-called empty region (the subregion
II) is filled in by the spherical Mie scatterer in back-
scattering, which is characterized by employing the char-
acteristic decomposition. The PI − PΔ plane has a simpler
geometric representation and is more convenient for the
classification of the polarized light scattering media, and
the analysis based on the IPP and the CD provide a deeper
insight of the depolarization properties.
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