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Avery specific ensemble of ground and excited states is shown to yield an exact formula for any excitation
energy as a simple correction to the energy difference between orbitals of the Kohn-Sham ground state. This
alternative scheme avoids either the need to calculate many unoccupied levels as in time-dependent density
functional theory (TDDFT) or the need for many self-consistent ensemble calculations. The symmetry-
eigenstateHartree-exchange (SEHX) approximationyields results comparable to standardTDDFT for atoms.
With this formalism, SEHX yields approximate double excitations, which are missed by adiabatic TDDFT.

DOI: 10.1103/PhysRevLett.119.033003

The Hohenberg-Kohn (HK) theorem [1–4] of ground-
state density-functional theory (DFT) [1,5] has several
parts. The most used in practice is the establishment of
an exact density functional, F½n�, whose minimum yields
the exact ground-state density and energy of a given
system. Almost all practical calculations use the Kohn-
Sham (KS) scheme [5] to minimize F with an approxima-
tion to the small exchange-correlation (XC) contribution,
EXC½n�. In fact, many properties of interest in a modern
chemical or materials calculation can be extracted from
knowledge of the ground-state energy as a function of
nuclear coordinates, or in response to a perturbing field.
However, except under very special circumstances, most

optical excitation frequencies cannot be deduced. Hence
there has always been interest in extending ground-stateDFT
to include such excitations.Moreover, another part of theHK
theorem guarantees that such frequencies (and all properties)
are indeed functionals of the ground-state density. In recent
years, linear-response time-dependentDFT (TDDFT) [6–10]
has become a popular route for extracting low-lying exci-
tation energies of molecules, because of its unprecedented
balance of accuracy with computational speed [11]. For
significantly sized molecules, more CPU time will be
expended on a geometry optimization than a single
TDDFT calculation on the optimized geometry.
However, while formally exact, TDDFT with standard

approximations is far from perfect. If the unknown XC
kernel of TDDFT is approximated by its zero-frequency
(and hence ground-state) limit, no multiple excitations
survive [11]. While a useful workaround exists for cases
where a double is close to a single excitation [12,13], there
is as yet no simple and efficient general procedure for
extracting double excitations within adiabatic TDDFT [14].
Ensemble DFT (EDFT) [15,16] applies the principles of

ground-state DFT to a convex ensemble of the lowest M

levels of a system, for which a KS system can be defined
[17]. EDFT is formally exact, but practical calculations
require approximations, and initial attempts yielded disap-
pointing results [18]. Accuracy is greatly improved when
so-called “ghost interactions” between distinct states are
removed from the approximations [19]. EDFT remains an
active research area because, being variational, it should not
suffer from some of the limitations of standard TDDFT.
Recent strides by Pernal and co-workers [20,21], Fromager
and co-workers [22,23], and others attempt to create a useful
practical alternative to TDDFT, but the difficulty remains in
finding accurate low-cost approximations. EDFT usually
requires running several different self-consistent ensemble
calculations to extract several low-lying excitations.
Here we (a) derive a formula from EDFT to correct a KS

orbital energy difference into an exact excitation energy,
without doing any self-consistent ensemble calculations,
(b) argue that its computational cost should typically be
less than either standard TDDFT or EDFT, (c) calculate
this correction using the symmetry-eigenstate Hartree-
exchange (SEHX) approximation [24–26] for atoms, dem-
onstrating its accuracy relative to standard TDDFT, and
(d) show that SEHX estimates double excitations.
EDFT is a formally exact and variational excited-state

method [15–17]. Let Ei be the electronic energy levels,
i ¼ 0; 1;…, each with degeneracy gi. Construct an ensem-
ble from positive convex weights wi, letting I be the
maximum nonzero weight. The weights are not variational
parameters. Then, from the foundational theorems, the
ensemble energy

EIðfwigÞ ¼
XI

i¼0

giwiEi;
XI

i¼0

giwi ¼ 1 ð1Þ

is a functional of the ensemble density
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nensðrÞ ¼
XI

i¼0

wi ~niðrÞ; ð2Þ

where ~niðrÞ is the sum of all densities in the ith multiplet
[so that

R
d3r ~niðrÞ ¼ giN, with N being the number of

electrons], and can be found via a minimization, so long as
the weights are monotonically nonincreasing. Applying the
same conditions to a fictitious system of noninteracting
electrons with the same weights, one can define a KS
system whose ensemble density matches the interacting
one. Defining energy components in the usual way, only
the XC contribution needs to be approximated to perform
an ensemble DFT calculation. Since the ensemble energies
depend linearly on the weights (at least, in the exact
theory), one can easily deduce transition frequencies.
Infinitely many ensembles can be realized, but the Gross-

Oliveira-Kohn (GOK) ensemble from the original work
[17] is particularly useful and popular, in which all weights
are the same except for the highest multiplet, i.e.,

wi≠I ¼ ð1 − gIwÞ=MI−1; wI ¼ w ðGOKÞ; ð3Þ
where MI is the number of states up to and including the I
multiplet, and w ≤ M−1

I to preserve convexity. When
w ¼ M−1

I , the weights are all equal (an equiensemble). In
general, the corresponding ensemble density must be found
by self-consistent solution of the ensemble KS equations,
for the given weights. The excitation energy of the I
multiplet can only be isolated by performing self-consistent
calculations for all lower multiplets. The excitation energy
from the ground state to the Ith multiplet is [17]

ωI ¼
1

gI

dEGOK
I

dw

����
wI

þ
XI−1
i¼1

1

Mi

dEGOK
i

dw

����
wi

; ð4Þ

requiring I þ 1 self-consistent calculations, including the
ground-state KS calculation, where the density is held fixed
when the derivative is taken.
The weights defined by Eq. (3) are also a linear inter-

polation between two consecutive equiensembles, contain-
ing MI−1 and MI states. Thus ωI can also be calculated via

ωI ¼ MIEIðw ¼ M−1
I Þ −MI−1EI−1ðw ¼ M−1

I−1Þ; ð5Þ
which requires only two self-consistent calculations.
However, if one needs all excitation energies up to ωI ,
I þ 1 self-consistent calculations are still needed. The
computational costs of Eqs. (4) and (5) are much higher
than TDDFT with the Casida equation [7].
Now we reintroduce an alternative one-parameter

ensemble, in which all states have weight w except the
ground state,

w0 ¼
1 − wðMI − g0Þ

g0
; wi≠0 ¼ w ðGOKIIÞ: ð6Þ

We say reintroduce, as this ensemble was mentioned in a
footnote in Ref. [17], although never applied (as far as we

know). However, we can show (see Supplemental Material
[26]) that the excitation energy using Eq. (6) has a much
simpler formula than using Eq. (4),

ωI ¼
1

gI

�
dEGOKII

I

dw

����
wI

−
dEGOKII

I−1
dw

����
wI−1

�
: ð7Þ

Despite the simplicity, in general one still needs to do I þ 1
calculations to get all excitation energies. However, unlike
Eq. (3), the set of weights defined by Eq. (6) is now a linear
interpolation between the ground state and the equiensem-
ble ofMI states. Now, w ¼ 0 recovers the ground state, not
an equiensemble with one less multiplet. A further sim-
plification is made by noting that the EDFT formalism is
valid even as w → 0. Setting wI ¼ wI−1 ¼ 0 in Eq. (7) and
defining ΔωI ¼ ωI − ωKS

I , where ωKS
I is the KS orbital

energy difference, yields

ΔωI ¼
1

gI

d
dw

����
w¼0

ðEGOKII
XC;I − EGOKII

XC;I−1Þ ðDECÞ; ð8Þ

where EGOKII
XC;I is the GOKII ensemble XC energy functional

[17] containing up to the Ith multiplet. This is a direct
ensemble correction (DEC) to the KS transition frequencies.
Equation (8) is the central formal result of this work.

Because all elements of the right-hand side are evaluated on
the ground-state density, this correction is a formally exact
ground-state density functional for correctingKS transitions
into physical transitions. If approximated by an explicit
density functional, it could be evaluated at no noticeable
additional cost to a standard ground-state DFT calculation.
Compared with the cubic scaling of the TDDFT linear
response equations [7], Eq. (8) is vastly more efficient. On
the other hand, TDDFT yields both transition frequencies
and oscillator strengths, as well as dipole overlap matrices.
In addition, linear response TDDFT can yield spatially
resolved response functions, once perturbations different
from a long-wavelength electric field are allowed. In future
work, we explore what else, beyond transition frequencies,
might be extracted in a manner similar to Eq. (8).
There is an infinite number of excited-state ensembles.

Even if we consider only those that interpolate between the
ground state and the equiensemble, Eq. (6) is not the only
choice. The exact ensemble functional yields the same
result in any ensemble, but approximations yield different
results for different ensembles. A DEC expression is a
particularly simple route to excitation energies.
Equations (3) and (6) are identical for a simplebiensemble,

the ensemble of a nondegenerate ground and first excited
states. Studies of w ¼ 0 biensembles have been carried out
previously [37], as well as calculations of the first excitation
energy [24,25]. Thus the DEC of Eq. (8) can be viewed as a
generalization of such results to an arbitrary excitation.
The exact EGOKII

XC of Eq. (8) can be obtained numerically
for simple cases [24,25], but in practical calculations EGOKII

XC
must be approximated. In general, theEGOKII

XC of Eq. (8) must
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account for the state ordering and differences in multiplet
structure between the real and KS systems, which poses a
challenge for the development of approximations.
SEHX [24,25] is an explicit orbital-dependent ensemble-

density functional generalization of the exact-exchange
approximation (EXX) of ground-state DFT, whose full
expression is given in Supplemental Material [26]. Using
the energy decomposition of Nagy [38,39], SEHX con-
structs the combined Hartree-exchange energy from an
ensemble sum over spin- and spatially symmetrized multi-
determinant KS wave functions, removing ghost inter-
actions and approximating the ensemble discontinuity
[37], and yielding good results in the GOK ensemble
[24,25]. Inserting SEHX into Eq. (8), all the contributions
from excitations below I cancel, yielding an approximation
that depends only on the difference between a contribution
from the Ith multiplet and the ground state,

ΔωSEHX
I ¼ HI=gI −H0=g0: ð9Þ

Here Hi ¼ Horb
i þHdens

i , where

Horb
i ¼ 1

2

Z
d3rd3r0

jr − r0j trfVðr; r
0Þ ·Qig; ð10Þ

and

Hdens
i ¼ −

Z
d3rvHXðrÞ ~niðrÞ: ð11Þ

V is a matrix containing products of KS orbitals, Qi is a
matrix containing orbital occupation factors and symmetri-
zation coefficients of KS determinants (see Supplemental
Material [26]), and vHXðrÞ is just the ground-state Hartree-
exchange potential. As our tests are on atoms and ions, we
use the Krieger-Li-Iafrate (KLI) approximation [40] for
vHXðrÞ to obtain more accurate orbital energies than those
from semilocal approximations [41].We denote calculations
with Eq. (9) as DEC/SEHX. Unlike Eq. (8), Eq. (9) depends
only on the ground and excited states in question, so the state
ordering problem is bypassed and calculation is highly
efficient. The ordering independency of Eq. (9) is due to
SEHX, yielding reasonable excitation energies even if the
KS state ordering is different from the real one. On the other
hand, the approximate state ordering might not be correct.
To illustrate the performance of DEC/SEHX, we calcu-

lated excitation energies of small atoms. To see exclusively
the effect of the excitation method [42], we use the exact
KS potential and energies for the He and Be atoms [43,44].
We compare with TDDFT using the adiabatic local density
approximation (ALDA) [9]. For simplicity, we use the
Tamm-Dancoff approximation (TDA) [45] in TDDFT
calculations, and we checked to make sure that the results
only change slightly with and without TDA. The results are
shown in Figs. 1 and 2. More results for atoms are available
in Supplemental Material [26].
Figure 1 shows the He results. These are all single

excitations (as all doubles in He are in the continuum). The

DEC/SEHX gives results that are qualitatively similar to
those of standard TDDFT. In fact, the mean absolute
errors are typically about 30% smaller, despite the lack of
approximate correlation in the DEC calculation.
Figure 2 shows the results for Be, again with the exact KS

potential. For single excitations, the results are quantita-
tively similar to those of He, again with DEC errors being
noticeably smaller than their TDDFT/ALDA counterparts.
But in DEC we can also calculate the double excitations,
which are completely absent from any adiabatic TDDFT
calculation. We note that the double excitations are less
accurate than their single counterparts, but since there are
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FIG. 1. Exact KS and true excitations of the He atom (black).
Experimental values are given from the NIST atomic spectra
database [46,47]. DEC/SEHX excitation energies are shown in
red and TDDFT/ALDA results within TDA in blue.
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FIG. 2. Same as Fig. 1, but for Be [46,48]. Configurations are
denoted without core. The 2p2 configuration corresponds to two
doubly excited states (33P and 11D).
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only two, this might be incidental. Supplemental Material
[26] gives many more atomic calculations, using approxi-
mate ground-state KS potentials, showing the strong sensi-
tivity of both DEC and TDDFT to the KS levels in atoms.
To better understand the performance of DEC/SEHX for

the double excitations, we turn to a much simpler model
problem that was designed to study precisely this question.
Consider two fermions in a one-dimensional harmonic
potential with a contact interaction [12,49],

Ĥ ¼ 1

2

X2
i¼1

�
−

∂2

∂x2i þ x2i

�
þ λδðx − x0Þ; ð12Þ

where λ > 0. For small values of λ, the system is weakly
interacting, and exchange-type approximations are accurate.
The results are shown in Table I. Because this is one

dimensional, there are no degeneracies or multiplets.
However, this model was purposely constructed to have
near degeneracies between the multiple and single excita-
tions. With the harmonic confining potential, as λ → 0,
many levels approach one another. As shown, the double
excitation of level 2 is very close to the single of level 3, and
the double at level 4 is very close to the single at level 5.
In the fourth and fifth columns of the table, we report

exact exchange results. The former is TDDFT, using the
exact KS potential and the exact ground-state exchange in
an adiabatic approximation. The latter is DEC/SEHX. We
see that both are excellent approximations to the lowest
excitations, and give almost identical results for the single
excitations. This is because λ ¼ 0.2, ensuring that corre-
lation effects are relatively weak. But, unlike adiabatic
TDDFT, DEC/SEHX also yields predictions for the double
excitations. Just like in the atoms, the errors are substan-
tially larger for the doubles.
Because this model has only two electrons, we can

calculate the exact DEC numerically with Eq. (8), by
calculating the exact energies, densities, and XC potential
of the model first. We then evaluate Eq. (8) numerically
using these exact quantities (see Supplemental Material

[26]). These DEC-exact results are in column 6, and agree
within a mH with the exact results. This shows that exact
DEC does handle doubles correctly, so that the failing in
DEC/SEHX is due to the lack of correlation. The last
column of the table shows results with the dressed single-
pole approximation (DSPA), a frequency-dependent model
XC kernel designed for weakly correlated systems with
strong coupling between a single and double excitation,
often called dressed TDDFT [12,13]. This works extremely
well here, as this system was designed to illustrate its
accuracy. Study of the difference in the results between
these two should provide a route to improving DEC
approximations for double excitations.
A discerning reader might have noted that, throughout

this work, we have avoided discussion of N and v
representability [3,50,51]. These issues have been partially
explored [18,52] within EDFT in general, but not for this
particular ensemble. But none of the calculations here ran
into any representation difficulties, such as an inability to
find a KS system with the required density. There is little
reason to fear such problems in practice. Furthermore, as
we use only DEC, any such difficulties in EDFT in general
are likely to be least problematic for our applications.
There is obviously much work to be done to see if DEC

can become competitive with standard TDDFT calcula-
tions. It should be applied to molecules with standard
ground-state functionals, to see if the results are as accurate
or if semilocal ground-state approximations destroy the
accuracy found here within SEHX. Other challenges for
TDDFT, such as charge transfer excitations, should be
carefully tested. In such a case, we are less hopeful that
DEC will provide accurate results as, like TDDFT, it also
begins from (unrelaxed) KS transitions of the ground state.
Other ensembles might also yield direct ensemble correc-
tions, or properties other than simple excitation energies
might be accessible.
Several other EDFT-based methods for excitations were

recently proposed, such as the linear interpolation method
[22], the Helmholtz free-energy minimization method [20],
and the ensemble-referenced Kohn-Sham (REKS) method
[53]. The REKS method is a multireference extension to
ground-state DFT and EDFT (see also [54]), while the
others are within standard EDFT. Each has its own
advantages, and the REKS method has been shown to
work well in strongly correlated systems [55]. However, all
these methods require extra self-consistent calculations
aside from the ground-state one. The simplification
achieved in this paper by changing the ensemble type
suggests that similar simplifications may also be possible in
these methods. Another route for future research would
bypass the use of ensemble functionals altogether by
developing approximate methods based on the DEC.
In summary,DEC [in Eq. (8)] is a formally exact approach

to excitation energies from DFT, as illustrated by our model
harmonic trap calculation. For example, where the funda-
mental and optical gaps match (insulating solids without

TABLE I. Exact and approximate singlet ΔωI (in mH) of the
one-dimensional two-electron contact-interaction Hooke’s atom
with λ ¼ 0.2. The dressed TDDFT results are calculated with an
exchange-only frequency-dependent kernel [12].

ΔωI

TDDFT DEC TDDFT
I ωKS Exact AEXX SEHX Exact Dressed

Singles
1 962 38 39 39 38 39
3 1953 47 30 30 48 49
5 2948 52 25 27 51 54

Doubles
2 1923 41 58 41 39
4 2915 49 77 49 47
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excitons), DEC yields a new approach to the problem of
finding accurate gaps within DFT [56], relating the deriva-
tive discontinuities with respect to particle number [57] and
thosewith respect to optical excitation [37].While DEC and
TDDFT are both postprocessing steps after a ground-state
KS calculation, DEC is less expensive and applicable to
traditionally difficult problems such as multiple excitations
and spin multiplets. Unlike TDDFT, EDFT is based on a
variational principle [16], so the DEC derived in this work
may be more reliable than TDDFT corrections, which are
based on response theory. The calculations shown in this
paper merely demonstrate the DEC method: SEHX yields
better accuracy than TDDFT/ALDA for single excitations in
atoms, and approximates doubles (albeit less accurately than
singles). Simpler approximations, avoiding solution of
optimized effective potential (OEP)-type equations, might
produce usefully accurate results for valence excitations in
molecules. Thus DEC represents an exciting alternative
to TDDFT.
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