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The search for a resonant four-neutron system has been revived thanks to the recent experimental hints
reported in [1]. The existence of such a system would deeply impact our understanding of nuclear matter
and requires a critical investigation. In this work, we study the existence of a four-neutron resonance in the
quasistationary formalism using ab initio techniques with various two-body chiral interactions. We employ
no-core Gamow shell model and density matrix renormalization group method, both supplemented by the
use of natural orbitals and a new identification technique for broad resonances. We demonstrate that while
the energy of the four-neutron system may be compatible with the experimental value, its width must be
larger than the reported upper limit, supporting the interpretation of the experimental observation as a
reaction process too short to form a nucleus.
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Introduction.—Whether the four-neutron system (4n)
exists or not is a long-standing question that rests on the
fact that such a system would be the result of the subtle
interplay between the various components of the nuclear
interaction, the Pauli principle, and the coupling to the
neutron continuum. The recent enthusiasm in the search
for the 4n system [1] started with the experimental claim [2]
in 2002 that a bound 4n system could be formed in the
breakup reaction: 14Be� → 10Beþ 4n. This result, though
unconfirmed, stimulated theoretical investigations [3,4],
but none of them concluded that a bound 4n system can
exist. The most compelling study against the existence of a
bound 4n system is given in Ref. [4] where a large range of
modifications to the nuclear interaction (two-, three- and
four-body components) was investigated in an ab initio
framework without couplings to the continuum. However,
the existence of a resonant 4n system has not been ruled out.
The experimental hints of a 4n resonance provided by the

recent measurement [1] exacerbate the need for reliable
nuclear interactions and ab initio methods able to cope with
couplings to the continuum.According to those experimental
results, if such a state exists it would have an energy E ¼
0.83� 0.65ðstatÞ � 1.25ðsystÞ MeV above the 4n threshold
and a maximal width Γ ¼ 2.6 MeV. This large width is
unlikely to correspond to a nuclear state [5] and the question
we want to address in this work is the following: Can a
four-neutron system form a narrow resonance? InRef. [6] the
possibility of forming a 4n resonance by adding a phenom-
enological T ¼ 3=2 three-body force to a realistic two-body
interactionwas investigated. In that study, the continuumwas
included and it was shown that unrealistic modifications to
the nuclear interaction would be necessary to obtain a 4n
system at the experimental value. Moreover, in Ref. [7], an
ab initio study of 4nwasdone in theharmonic oscillator (HO)

basis using the realistic two-body JISP16 interaction [8].
The energy andwidth of a 4n resonancewere obtained in that
approach from phase shifts [9] assuming that all four
neutrons decay simultaneously, and lead to E ¼ 0.8 MeV
and Γ ¼ 1.4 MeV. Previously mentioned results in Ref. [6]
that are based on the uniform complex scaling method
[10,11] fully include couplings to the continuum and suggest
that if a 4n system exists its energy andwidth should bemuch
larger than in Ref. [7]. RecentMonte Carlo results [12] using
two- and three-body chiral interactions suggest that (i) three-
body forces are not important in the three- and four-neutron
systems, (ii) if a three-neutron resonance exists it must be
lower than that of the four-neutron system, and (iii) a four-
neutron resonance might exist at E ¼ 2.1 MeV. The contra-
dictory results on the nature of the four-neutron system range
from its existence as a narrow resonance to its nonexistence
as a genuine nucleus. In the present study we investigate
the conditions of existence of a 4n system using ab initio
methods for various two-body chiral interactions while
including the continuum.
Models and formalism.—In the present work, two differ-

ent techniques are used to describe 4n in the continuum.
These techniques are discussed below and both allow a
consistent treatment of the couplings to the continuum by
using the Berggren basis [13]. The Berggren single particle
(SP) completeness relation includes explicitly the Gamow
(resonant) states and the nonresonant scattering continuum.
For each partial wave c ¼ ðl; jÞ we have

X

i

jucðkiÞih ~ucðkiÞj þ
Z

Lþ
c

dkjucðkÞih ~ucðkÞj ¼ 1̂c; ð1Þ

where jucðkiÞi are the radial wave functions of resonant
states and jucðkÞi are the complex-energy scattering states
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along a contour Lþ
c in the fourth quadrant of the complex-

momentum plane that surrounds the poles fkig and then
extends to k → þ∞. In Eq. (1), the tilde denotes the time-
reversed states. The form of the contour is unimportant
because of Cauchy’s integral theorem, as long as the poles
are all embedded between the real axis and the contour;
details can be found in Ref. [14].
In this work we used the no-core Gamow shell model

(NCGSM), which is a generalization of the no-core shell
model [15], in the complex-energy plane [14,16] through
the replacement of the usual HO SP basis by the Berggren
basis. While the Hamiltonian operator is Hermitian, the
Hamiltonian matrix in the NCGSM is complex symmetric
and has complex eigenvalues. An advantage of this
approach based on the quasistationary formalism is that
it fully includes the couplings to the continuum while still
solving the many-body problem using configuration inter-
action techniques.
The second approach used in this work, the density

matrix renormalization group (DMRG) method [17–19], is
an alternative way to solve the nuclear many-body
problem in the continuum. In this approach, instead of
building the Hamiltonian matrix in the full space and
diagonalizing it as in the NCGSM, one starts from an
approximate eigenstate of the Hamiltonian obtained in a
small space and gradually includes the nonresonant
continuum in the configuration mixing, while keeping
only configurations corresponding to the largest eigenval-
ues of the density matrix.
In order to reduce the cost of our calculations the DMRG

method has been supplemented with natural orbitals (NO)
[20,21], which are eigenstates of the SP density matrix
associated with the targeted Hamiltonian eigenstate. A first
standard DMRG run is performed to approach the final
eigenstate of the Hamiltonian; then the corresponding NO
are calculated and a new DMRG run is performed where
the NO replace the Berggren basis states. This technique
leads to an impressive gain in time while efficiently
incorporating many-body correlations with the number
of DMRG iterations. Following this development, the
NCGSM has also been augmented by a similar technique
where NO are generated from a truncated space large
enough to have a decent approximation of the targeted
Hamiltonian eigenstate. Then one selects the NO with an
occupation in the density matrix η larger than some chosen
value 0 < ηmin < 1 in order to replace the Berggren basis in
a second run with fewer or no truncations.
In general, in both methods, the full spectrum of the

Hamiltonian contains some many-body bound states and
decaying resonances aswell as a large number ofmany-body
complex-energy scattering states. The proper extraction of
many-body resonant states from the nonresonant back-
ground is usually achieved in these methods by selecting
the eigenstates that have the maximal overlap with the
solutions obtained in a truncated space only made of poles

of the Berggren basis (resonant states) [22]. This method
works as long as the truncated space gives a decent approxi-
mation of the final eigenstate; however, when couplings to
the continuum are dominant it is not the case anymore.
To circumvent this limitation, the interaction is multiplied by
a factor f > 1 so that the targeted state is bound and its
identification immediate, and then the obtained eigenstate is
used to identify the eigenstate for a smaller scaling factor
f0 < f. This process is repeated until the factor equals 1. In
practice this new technique preserves the unambiguous
identification of resonances and extends the range of appli-
cability of the overlap method to broader resonances.
Results.—In the present work we considered a model

space made of the 0s1=2 and 0p3=2 resonant shells (pole
space), and associated nonresonant partial waves whose
energies are selected along the contours in the complex-
momentum plane defined by the points (0,0), ð0.15;−0.05Þ,
(0.3,0), and (4.0,0) (all in fm−1), each segment being
discretized by 15 points. The Woods-Saxon potential gen-
erating the SP basis was defined by the diffuseness
a ¼ 0.67 fm, the radius R0 ¼ 1.9 fm, the depth V0 ¼
−27.0 MeV, and the spin-orbit term Vso ¼ 9.5 MeV.
Except for the depth, these parameters provide a decent
basis for the description of light systems such as 3H, 3He,
or 4He.We checked that changing these parameters by about
15% had almost no effect on results for the four-neutron
system. The model space is augmented by 30 nonresonant
p1=2 partial waves along a real contour going up to 4.0 fm−1,
and seven HO shells for each higher partial wave (d, f,
and g). The oscillator length for HO wave functions is set at
b ¼ 2.0 fm and we verified that the effect of this parameter
on our results is negligible. Also, removing the g7=2 HO
waves has almost no effect on our results.
In the NCGSM, when allowing only two neutrons into

the continuum, the predicted energies and widths of the 4n
system for Jπ ¼ 0þ and for various two-body chiral inter-
actions (N3LO [23], N2LOopt [24], and N2LOsat [25]) with
different renormalization cutoffs (λ ¼ 1.7�2.1 fm−1) in
V low k [26,27] and the realistic two-body JISP16 interaction
[8] for ℏΩ ¼ 20 MeV are all consistent as shown in Table I.
Strictly speaking, the N2LOsat interaction has three-body
components and we only used its two-body part for a
qualitative comparison. Moreover, the negligible influence

TABLE I. Energies and widths (in brackets) of the Jπ ¼ 0þ
pole of the four-neutron system (in MeV) for various two-body
interactions. The asterisk means that only the two-body part of
the interaction was considered.

λ ¼ 1.7 fm−1 λ ¼ 1.9 fm−1 λ ¼ 2.1 fm−1

N3LO 7.27 (3.69) 7.28 (3.67) 7.28 (3.69)
N2LOopt 7.32 (3.74) 7.33 (3.78) 7.34 (3.95)
N2LOsat

* 7.24 (3.48) 7.22 (3.58) 7.27 (3.55)
JISP16 7.00 (3.72)
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of the renormalization cutoff of the interaction on the results
indicates a weak influence of the missing three- and four-
body forces.
The large widths obtained with only two neutrons in the

continuum (Γ ≈ 3.7 MeV) already discredit the existence
of the four-neutron system as a narrow resonance.
However, in these calculations the width of the four-
neutron system is mostly controlled by the occupation of
the pwaves. Below, we show that additional neutrons in the
continuum lower the energy but do not reduce the width.
In the following, we use the N3LO two-body chiral

interaction with a renormalization cutoff of λ ¼ 1.9 fm−1.
The role of the continuum in shaping the 4n system is
illustrated by scaling the interaction by a factor f ¼ 2.0 so
that the system is artificially bound, and then one follows
the evolution of the energy and width of the Jπ ¼ 0þ state
when f → 1.0 by step of 0.05 and for a total of 20 points
as shown in Fig. 1.
The first set of results denoted NCGSM-2p2h corre-

sponds to the NCGSM calculations with only two neutrons
in the continuum and shows a rapid increase of the width
when the scaling of the interaction is gradually decreased.
The small variation of the energy with the scaling factor
around f ¼ 1.6 is due to the use of several different bases
where the 0p3=2 shell is bound for f ≥ 1.6 and unbound for
f < 1.6, to acknowledge the opening of the 4n → 3nþ n
channel. In practice, the depth V0 of the potential generat-
ing the p waves was changed from −32.0 to −27.0 MeV.
We used the NCGSM-2p2h results to generate NO for each
scaling factor and kept only the NO having an occupation
η > 10−7 in the SP density matrix, reducing the size of the

basis by a factor≈2.9. The first s1=2 and p3=2 NO are treated
as pole states while remaining orbitals are considered as
continuum shells. Then we considered two and three
neutrons in the NO continuum shells in the results denoted
NCGSM-2p2h (NO) and NCGSM-3p3h (NO), respec-
tively. This technique allows us to reduce the computational
cost and to include additional many-body correlations in a
more efficient way. The NCGSM-2p2h (NO) results shown
in Fig. 1 illustrate this point clearly, as they are all lower in
energy than the initial NCGSM-2p2h results obtained in
the Berggren basis. However, the quality of the NO for
the description of the targeted state depends on how close
the generating eigenstate is to the final eigenstate. The
NCGSM-2p2h (NO) calculations could only be performed
for f > 1.45 for that reason. Another advantage of the NO
is the possibility to remove some of the truncations as
compared to the generating calculations (NCGSM-2p2h).
However, the generating calculations need to include
enough correlations in the continuum for the removal of
truncations in the calculations with NO to be meaningful.
In the NCGSM-3p3h (NO) calculations we allowed three
neutrons in the NO outside the pole space and thus included
more correlations. The NCGSM-3p3h (NO) calculations
were limited to f > 1.45 as well. It was not possible to
completely remove the truncations in the NCGSM and
hence one had to rely on the DMRG method.
The DMRG results are without truncations on the

number of particles (same shells as in the NCGSM) and
the convergence criterion of the method has been fixed by
the parameter ε ¼ 10−8 [18,19]. These results are about
1 MeV lower than the NCGSM-3p3h (NO) at a scaling
factor of f ¼ 2.0, which indicates important missing
correlations in the NCGSM calculations. This shows that
configurations with four neutrons in the continuum shells
have a large contribution to the wave function even when
the system is artificially bound. In fact, the opening of new
decay channels and the presence of continuum states in the
configuration mixing above the threshold is expected to
make the width explode when f → 1, especially in the
DMRG results where all decay channels are open. This is in
qualitative agreement with the results in Ref. [6], which
show a rapid increase of the width when the strength of
the phenomenological T ¼ 3=2 three-body force decreases.
This explosion of the width is already visible in the
NCGSM results with NO where, comparatively, the width
increases faster than in the NCGSM-2p2h results. Another
hint of the explosion of the width is the impossibility to
perform the DMRG calculations far above the four-neutron
threshold, even when using the improved identification
technique for broad resonances. This was due to the strong
couplings to the continuum, resulting in large overlaps
between complex-energy scattering states and the targeted
decaying resonance, making them indistinguishable.
Finally, while the energy position of the four-neutron
system may be compatible with the experimental value

FIG. 1. Evolution of the energy and width (shaded area) of the
four-neutron system with the scaling of the N3LO interaction
from 2.0 to 1.0. The circles represent the NCGSM results with
two neutrons in the continuum, which is used to generate the
NCGSM results based on natural orbitals with two (triangles) and
three (squares) neutrons in the continuum. The DMRG results
without truncations are represented by stars. The experimental
energy is indicated by a diamond and the gray area shows the
maximal experimental uncertainties. This area is extended up to
an interaction 20% more attractive to guide the reader.
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when f → 1, calculations including more than two particles
in the continuum as in Table I suggest that the width of 4n is
larger than Γ ≈ 3.7 MeV.
Conclusions.—In this work, we investigated the exist-

ence of the 4n system in the continuum using the no-core
Gamow shell model and the density matrix renormaliza-
tion group method and realistic two-body chiral inter-
actions. Two new ingredients have been added to these
approaches in order to make this study. First, the intro-
duction of natural orbitals has been a key element for
improving the convergence of the calculations in the
continuum, and second, the progressive rescaling of the
interaction to produce starting eigenstates as a technique
to identify unambiguously broad resonances into the
continuum was critical.
While three-body forces were not included in this work,

the important role of the Pauli principle in shaping the
many-body structure of the 4n system as well as its low
density suggest that their exclusion yields a reasonable
approximation as recently confirmed in Ref. [12].
Interestingly, the results we obtained for various two-body
chiral interactions were all consistent and were mostly
dependent on the number of neutrons in the continuum.
We confirm the existence of a pole of the scattering matrix
associated with the spin and parity Jπ ¼ 0þ in this system
as shown in previous studies; however, the proper inclusion
of the couplings to the continuum shows that this pole must
be a feature in scattering experiments and not a genuine
nuclear state. Physically this can be interpreted as a reaction
process involving four neutrons, which is too short to form
a nucleus. However, the description of such a broad state is
at the limit of the quasistationary formalism and it is clear
that any conclusion on the existence of a light nucleus
solely based on the width is speculative to some extent.
A measurement of a resonance with a half-life greater than
10−22s would provide a strong case for the existence of the
4n system as a nucleus.
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