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We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter (FDM) from
Lyman-α forest data. Extremely light bosons with a de Broglie wavelength of ∼1 kpc have been suggested
as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter
model. For the first time, we use hydrodynamical simulations to model the Lyman-α flux power spectrum
in these models and compare it to the observed flux power spectrum from two different data sets: the
XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical
parameters and with conservative assumptions for the thermal history of the intergalactic medium (IGM)
that allow for jumps in the temperature of up to 5000 K, XQ-100 provides a lower limit of 7.1 × 10−22 eV,
HIRES/MIKE returns a stronger limit of 14.3 × 10−22 eV, while the combination of both data sets results in
a limit of 20 × 10−22 eV (2σ C.L.). The limits for the analysis of the combined data sets increases to
37.5 × 10−22 eV (2σ C.L.) when a smoother thermal history is assumed where the temperature of the IGM
evolves as a power law in redshift. Light boson masses in the range 1–10 × 10−22 eV are ruled out at high
significance by our analysis, casting strong doubts that FDM helps solve the “small scale crisis” of the cold
dark matter models.
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Introduction.—Recently, there has been growing interest
in so-called fuzzy dark matter (FDM) models where the
dark matter is made of ultralight bosons. Cosmological and
astrophysical consequences have been comprehensively
reviewed in Refs. [1–5] highlighting the particle physics
motivation [6–9] for such models, as well as the importance
of experimental searches [10]. A broad variety of astro-
physical implications have been investigated in the liter-
ature: the halo mass function [11], the innermost structure
of halos [12–14], the dynamical properties of the smallest
objects [15], the linear matter power spectrum [1], the
development of nonlinearities by usingN-body simulations
[16], the abundance of high-redshift objects [17], the
overall impact of FDM on galaxy formation and the
reionization history of the Universe, the intergalactic
medium [4,18–21], pulsar timing and binary pulsars
[22,23], and the properties of our Galactic disk [24].
The general conclusion is that, in order to have an
appreciable astrophysical impact, the mass of ultralight
bosons would have to lie in the range 1–10 × 10−22 eV, and
in this mass range it is indeed possible that some small scale
“tensions” of cold dark matter with observations could be

alleviated (see, e.g., Ref. [25] for a review of the small scale
“crisis” of cold dark matter).
The intergalactic medium (IGM) [26,27] plays a unique

role in constraining the (small scale) matter power spectrum
since the low-density, high-redshift IGM filaments are
particularly sensitive to the small scale properties of dark
matter. The main observable manifestation of the IGM, the
Lyman-α forest, has provided important constraints on the
linear matter power spectrum, especially when combined
with cosmic microwave background data [28–34]. This
includes, most notably, the tightest constraints on warm
dark matter (WDM) models [35–40], upper limits on
neutrino masses [33,40,41], and the recent remarkable
discovery of baryonic acoustic oscillations in the trans-
mitted 3D flux [42,43]. These results, especially those at
small scales, are primarily due to the fact that the observed
Lyman-α forest flux power spectrum provides a tracer of
matter fluctuations on small scales and at high redshifts,
where these fluctuations are still in the quasilinear regime.
At present, the tightest limits on the free streaming of
WDM, expressed as the equivalent masses of thermal
WDM relics, are in the range mWDM > 2.3–5 keV at 2σ
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C.L. The values at the lower end of this range are probably
overly conservative and require the assumption of thermal
histories that are likely unphysical [44].
In FDM models, even though the typical de Broglie

scale is rather small (∼ kiloparsecs), the effect of FDM on
the linear matter power spectrum is noticeable on scales
larger than the smallest scales typically constrained by
IGM data [1]. In the absence of fully numerical FDM
simulations of the flux power spectrum, it has therefore
become common practice to convert the limit on thermal
relic WDM models—for which the flux power spectrum
has been modeled in considerable detail—into FDM
limits by comparing the linear matter power spectrum
of WDM and FDM models and using the mass corre-
sponding to k1=2, the wave number at which the linear
power spectrum departs (i.e., is suppressed) from the
corresponding cold dark matter power spectrum by 50%.
However, the accuracy of this rather crude mapping can
only be checked by performing a full set of hydrody-
namical simulations to model the effect of FDM on the
properties of the IGM and the Lyman-α forest. Here, we
will use such simulations to provide the first constraints
on FDM models based on a full modeling of the Lyman-
α flux power spectrum and comparison with two high-
redshift data sets well suited to probing the small scale
matter power spectrum. This will also allow us to check
the accuracy of the k1=2 mapping of thermal relic WDM
constraints. Our analysis will be quite similar to the one
presented in Refs. [36,45], where the flux power spectrum
is modeled using a set of hydrodynamical simulations
that vary astrophysical and cosmological parameters
combined with a Monte Carlo Markov chain analysis
in the multidimensional parameter space.
Data.—The first sample we use is the set of 100 medium

resolution, high signal-to-noise quasistellar object (QSO)
spectra of the XQ-100 survey [46], with emission redshifts
3.5 < z < 4.5. A more detailed description of the data and
the power spectrum measurements of the XQ-100 survey
can be found in Ref. [45]. Here, we repeat the most
important properties of the data and the derived flux power
spectrum. The spectral resolution of the X-shooter spectro-
graph is 30–50 km=s, depending on wavelength. The flux
power spectrum used in the analysis has been calculated for
a total of 114 ðk; zÞ data points in the ranges z ¼ 3, 3.2, 3.4,
3.6, 3.8, 4, 4.2 and 19 bins in k space in the range
0.003–0.057 s=km. We further use the measurements of
the flux power spectrum presented in Ref. [36], at redshift
bins z ¼ 4.2, 4.6, 5.0, 5.4 and in 10 k bins in the range
0.001–0.08 s=km. In this second sample, the spectral
resolution of the QSO absorption spectra obtained with
the MIKE and HIRES spectrographs are about 13.6 and
6.7 km=s, respectively. As in the analysis of Ref. [36], a
conservative cut is imposed on the flux power spectrum
obtained from the MIKE and HIRES data, and only the
measurements with k > 0.005 km−1 s are used to avoid

possible systematic uncertainties on large scales due to
continuum fitting.
Compared to XQ-100, the HIRES/MIKE sample has the

advantage of probing smaller scales and higher redshift.
There is a small redshift overlap between the two samples
at z ¼ 4.2. Since the thermal broadening (measured in
km=s) of Lyman-α forest lines is roughly constant with
redshift, the presence of a cutoff in the matter power
spectrum due to free streaming becomes more prominent in
velocity space at high redshift due to the HðzÞ=ð1þ zÞ
scaling between the fixed comoving length scale set by the
free-streaming length and the corresponding velocity scale.
Moreover, the 1D power spectrum is more sensitive to the
presence of a cutoff compared to the 3D power spectrum.
Simulations.—Similar to Refs. [36,45], we model the

flux power spectrum using a set of hydrodynamical
simulations performed with the GADGET-3 code, a
modified version of the publicly available GADGET-2 code
[47]. A simplified star formation criterion is applied for
which gas particles above an overdensity 1000 and below
T ¼ 105 K are converted into stars (see, e.g., Ref. [48]).
The reference model simulation has a box length of
20 Mpc=h with 2 × 7683 and (cold) dark matter particles
(gravitational softening of 1 comoving kpc=h) in a flat Λ
cold dark matter (ΛCDM) Universe with cosmological
parameters Ωm ¼ 0.301, Ωb ¼ 0.0457, ns ¼ 0.961,
H0 ¼ 70.2 km s−1 Mpc−1, and σ8 ¼ 0.829, in agreement
with Ref. [49]. Three different WDM models with masses
mWDM ¼ 2; 3; 4 keV have also been simulated in order to
obtain WDM constraints.
We simulate five different FDM models using the

transfer function provided by Ref. [1] with light axion
masses mFDM of 1, 4, 5.7, 15.7, and 30 × 10−22 eV. These
values have roughly the same k1=2 as models corresponding
to thermal WDM relic masses of 1, 1.73, 2, 3, and 3.87 keV,
covering the relevant range for the “small scale crisis” of
cold dark matter. These models were also simulated using
the axionCAMB code [3] to obtain the linear transfer function,
finding negligible impact on the simulated flux power.
The corresponding ΛCDM model is also simulated along
with a range of IGM thermal histories and cosmological
parameters. In Fig. 1 we show the linear, nonlinear, and
flux power spectra at z ¼ 5.4 for WDM and FDM models
that have the same k1=2: nonlinearities erase some of the
information contained in the linear power spectrum. Note
that the 1D flux power is much more sensitive to the cutoff.
The maximum wave numbers at which the flux power
spectrum is measured by HIRES/MIKE and XQ-100 are
represented by the horizontal arrows.
It has been noted before (see, e.g., Ref. [50]) that, for the

analysis of the Lyman-α forest, it is sufficient to use the
appropriate transfer function without modeling the full
quantum effects below the de Broglie wavelength of the
FDM particle. This hypothesis is supported by the fact that
the quantum pressure starts to dominate over gravity on
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scales smaller than the FDM Jeans scale (k > kJ) [50].
The FDM Jeans scale increases with cosmic time and
also with the mass of the FDM particle. For the largest
redshift, z ¼ 5.4, and smallest mass in our simulations,
mFDM ¼ 1 × 10−22 eV, the FDM Jeans scale is
64.7h Mpc−1, which corresponds to scales smaller than
the scale probed by our data (kmax ¼ 12.7h Mpc−1 for
HIRES at z ¼ 5.4) [51]. The effect of the quantum pressure
term should thus have a negligible effect on the structure
formation relevant for the Lyman-α forest.
We vary the thermal history by modifying the photo-

heating rates in the simulations as in Ref. [52]. The low-
density IGM (Δ ¼ 1þ δ < 10) is well described by a
power-law temperature-density relation, T ¼ T0Δγ−1. We
consider a range of values for the temperature at mean
densityT0 and the slope of theT − ρ relation, γ, based on the
previous analysis of the Lyman-α forest and recent obser-
vations [53]. As in Ref. [45], these consist of a set of three
different temperatures at mean density, T0ðz ¼ 3.6Þ ¼
7200; 11 000; 14 800 K, which evolve with the redshift, as
well as a set of three values of the slope of the T − ρ relation:
γðz ¼ 3.6Þ ¼ 1.0, 1.3, 1.5. The reference thermal history
assumes (T0ðz ¼ 3.6Þ; γðz ¼ 3.6Þ) ¼ ð11 000 K; 1.5Þ.
Again following Ref. [45], we use two parameters

describing cosmology, σ8 and neff ¼ d lnPmðkÞ=d ln k,
evaluated at k ¼ 0.005 km−1 s. Five different values are
considered for both σ8 ¼ 0.754, 0.804, 0.829, 0.854, 0.904
and neff¼−2.3474, −2.3274, −2.3074, −2.2874, −2.2674.
The reference model has ðσ8; neff ; nsÞ ¼ ð0.829;−2.3074;
0.961Þ. We also vary the redshift of reionization zrei, which
is chosen to be zrei ¼ 9 for the reference model as well
as zrei ¼ 7, 15 for two additional models [54]. The last
parameter (fUV) characterizes the effect of ultraviolet (UV)

background fluctuations. An extreme model dominated by
QSOs has been chosen with a strong scale dependence at
higher redshift and towards large scales. The mean flux is
also varied a posteriori through rescaling the effective
optical depth, τeff ¼ − ln F̄. We use three different values
ð0.8; 1; 1.2Þ × τobs;eff , with the observed value of τobs;eff
chosen to be those of the SDSS-III/BOSSmeasurements [57].
Method.—Using the models of the flux obtained from

the simulations, we establish a grid of points for each
redshift, in the parameter space of (F̄ðzÞ;T0ðzÞ;γðzÞ;σ8;zrei;
neff ;fUV;mFDM). We then perform a linear interpolation
between the grid points in this multidimensional parameter
space to obtain predictions of flux power for the desired
models. The interpolation is performed for PFðk; zÞ,
directly, rather than for ratios of flux power with respect
to the corresponding ΛCDM simulation, as was done in
Ref. [36]. Parameter constraints are then obtained with a
Monte Carlo Markov Chain (MCMC) code that explores
the likelihood space until convergence is reached.
The redshift evolution of the IGM parameters T0 and γ

are modeled as power laws for our reference analysis:
T0ðzÞ ¼ TA

0 ½ð1þ zÞ=ð1þ zpÞ�TS
0 and γðzÞ ¼ γA½ð1þ zÞ=

ð1þ zpÞ�γS . The pivot redshift is different for each data
set and roughly corresponds to the redshift at which most of
the data lies (zp ¼ 3.6, 4.5, 4.2 for XQ-100, HIRES/MIKE,
and the combined analysis, respectively).
Results.—In Fig. 2 we show the main result of this

Letter: the marginalized 1D likelihood for 1=mFDM. For our
reference analysis, in which the temperature evolution is
parametrized as a power law at different pivot redshifts,
XQ-100 returns an upper limit of 4.6 × 10−22 eV, HIRES/
MIKE gives 16.4 × 10−22 eV, while the combination
of the two data sets results in a considerable improvement,
37.5 × 10−22 eV (2σ C.L.). These numbers become 2.7,
16.5, 32.2 × 10−22 eV, for XQ-100, HIRES/MIKE, and
both data sets, when using the following Planck priors on
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FIG. 1. Power spectrum relative to ΛCDM at z ¼ 5.4 (in %).
Linear matter, nonlinear matter, and flux power spectra are
represented by the thin, thick, and very thick curves, respectively.
Black (blue) curves are for FDM (WDM) models with mFDM ¼
5.7; 15.7 × 10−22 eV (mWDM ¼ 2; 3 keV).

FIG. 2. 1D marginalized likelihood constraints for 1=mFDM.
XQ-100, HIRES/MIKE, and XQ-100+HIRES/MIKE are repre-
sented by the blue, red, and green curves, respectively, with (solid
curves) and without (dotted curves) using Planck priors. Addi-
tionally, results for models where we vary temperature independ-
ently in each redshift bin are plotted as dashed curves. The 2σ
upper limits are represented by vertical lines.
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neff ¼ −2.307� 0.01 and σ8 ¼ 0.829� 0.01 (1σ Gaussian
priors). The improvement in the joint constraints is due to
the fact that, when combining the two data sets, the thermal
evolution of the IGM is assumed to be one power law for
both T0ðzÞ and γðzÞ for the full redshift range of the
combined data sets. If we drop the assumption of a power-
law evolution and we let the temperature vary independ-
ently in each redshift bin, with a maximum jump ΔT ¼
5000 K in bins that are separated by Δz ¼ 0.2, we obtain
7.1, 14.3, 20.0 × 10−22 eV for XQ-100, HIRES/MIKE,
and both combined. We regard this result as the most
conservative since sudden jumps of temperature are not
physically plausible in this redshift range (see, e.g.,
Refs. [58,59]).
Increasing the covariance matrix by a multiplicative

factor 1.3 in order to better represent a possible under-
estimation of the errors does not affect the results appreci-
ably. In Table I we summarize the results—including the
χ2=d:o:f: for the reference case—which appear to be very
reasonable in all cases. For the combined analysis, the
other parameters lie within the following 2σ C.L.
ranges: zp ¼ 4.2: σ8¼½0.83;0.95�, neff ¼ ½−2.43;−2.31�,
TAðzpÞ½104 K� ¼ ½0.71; 1.06�, TSðzpÞ ¼ ½−3.37;−0.80�,
γAðzpÞ ¼ ½1.27; 1.69�, γSðzpÞ ¼ ½−0.11; 1.82�, zrei ¼ ½6.27;
13.62�, and fUV ¼ ½0.04; 0.94�.
We have verified the constraints obtained by considering

additional simulations with an mFDM of 30 × 10−22 eV.
In Fig. 3 we illustrate the relation between the WDM and

FDM constraints. Because of the lack of detailed modeling
of the flux power spectrum for FDM models using
hydrodynamical simulation thus far, it has usually been
assumed that one can map thermal relic WDMmasses onto
FDM constraints by identifying the corresponding k1=2
values for the linear power spectra, i.e., the wave number at
which the power reaches 50% of the ΛCDM linear power
spectrum. Figure 3 shows that this is not a good approxi-
mation. For XQ-100 only, i.e., for a WDM constraint of
1.34 keV, the corresponding FDM limit is slightly above
the k1=2 curve, which remains a reasonable approximation.
The HIRES/MIKE data only, however, give a WDM lower
limit of 4.7 keV that translates into a FDM limit which is

much weaker than the one that would be obtained using the
k1=2 mapping. The same holds for the combined analysis.
For these higher thermal relic WDM masses, the WDM
constraints are better mapped onto FDM constraints by
using k0.75 rather than k1=2, where k0.75 is defined as the
wave number at which the power reaches 75% of the
ΛCDM linear power spectrum. The reason for this is that,
as the free-streaming cutoff moves to smaller scales for
larger particle masses, the scales affected by the free-
streaming cutoff become more nonlinear.
We have also checked to see that similar conclusions are

reached when considering the 1D linear power spectrum,
which is the quantity actually probed by the flux power
spectrum (rather than the 3D power spectrum). The differ-
ent data sets are obviously constraining linear power at
different ðk; zÞ values. Nonlinearities will develop differ-
ently in WDM and FDM models, and this makes the
mapping between the two scenarios ambiguous. Full non-
linear hydrodynamic simulations and detailed modeling of
the flux power spectrum is required for accurate constraints
on FDM models. WDM models retain more small scale
power at k > k0.75 than the corresponding FDM model,
which instead has a more prominent knee at k < k0.75.
These differences partially compensate for one another in
terms of nonlinear 1D flux power in a nontrivial way that
depends on how nonlinear the matter power spectrum is at
the free-streaming scale. Similar to the shape of the WDM
cutoff, the FDM cutoff in the flux power spectrum appears
to be rather distinctive, with no significant degeneracies for
the other parameters in the analysis.
Conclusions.—We have presented constraints on FDM

models based on detailed modeling of the Lyman-α
forest 1D flux power spectrum and high-resolution data
at intermediate and high redshifts with hydrodynamical
simulations. These are the first constraints that incorporate
the effect of the relevant IGM physics, including thermal
and pressure smoothing on the nonlinear evolution of the
flux power spectrum on the relevant scales. Our final,

TABLE I. Marginalized constraints at 95% (lower limits). The
pivot redshifts for different data sets are zp ¼ 3.6, 4.5, 4.2 for
XQ-100, HIRES/MIKE, and a combination for the reference
case, the covariance matrix multiplied by 1.3, the Planck priors,
and the temperature in the redshift bins.

mFDM½10−22 eV� XQ-100 HIRES=MIKE Combined

References 4.5 16.4 37.5
cov × 1.3 3.9 16.3 34.9
Planck priors 2.7 16.5 32.2
T0ðzÞ bins 7.1 14.3 20.0
χ2=d:o:f: (references) 134=124 33=40 187=173

FIG. 3. Comparison of limits on mFDM and mWDM (thermal
relic). Also shown is the relation obtained by matching k1=2, k0.75,
and k0.9 for the linear power spectra. Shaded areas show regions
excluded by the analysis of XQ-100, HIRES/MIKE, and both
data sets, in blue, red, and green, respectively. Filled circles
represent the 2σ C.L. lower limits for WDM and FDM.
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conservative lower limit from a joint analysis of the
intermediate and high-resolution Lyman-α forest data,
mFDM > 20 × 10−22 eV (2σ C.L.), was obtained with
conservative assumptions for the thermal history of the
IGM that allow for (unphysical) sudden jumps of the IGM
temperature up to 5000 K. This lower limit for the mass of
ultralight bosons strengthens by about a further factor of 2
if we assume a smoother thermal history of the IGM. Our
analysis appears to close the window on FDM models with
significant astrophysical implications, particularly for alle-
viating the tension between observations and theoretical
predictions of cold dark matter models on small scales.
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Note added.—Recently, an analysis of IGM data was
performed by the authors of Ref. [60], reaching conclusions
similar to ours with slightly weaker constraints on the
FDM mass.
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