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Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar
condensate can form and fragment into Q balls before decaying. If theQ balls dominate the energy density
for some period of time, the relatively large fluctuations in their number density can lead to formation of
primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a
general charged scalar field, this robust mechanism can generate black holes over the entire mass range
allowed by observational constraints, with a sufficient abundance to account for all dark matter in some
parameter ranges. In the case of supersymmetry the mass range is limited from above by 1023 g. We also
comment on the role that topological defects can play for PBH formation in a similar fashion.
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It is a long-standing question whether black holes could
form in the early Universe [1–12]. Primordial black holes
(PBH) could account for all or part of dark matter [1–6,8–
12], they could be responsible for some of the gravitational
wave signals observed by LIGO [13–15], and they could
provide seeds for supermassive black holes [7]. A number
of scenarios for black hole formation have been considered
[5], and many of them rely on a spectrum of primordial
density perturbations that has some extra power on certain
length scales, which can be accomplished by means of
tuning an inflaton potential.
In this Letter we present a more generic scenario for PBH

formation in the early Universe, which does not rely on
any particular spectrum of density perturbations from
inflation. Scalar fields with slowly growing potentials form
a coherent condensate at the end of inflation [16–19]. In
general, the condensate is not stable, and it breaks up in
lumps, which evolve into Q balls [20]. The gas of Q balls
contains a relatively low number of lumps per horizon, and
the mass contained in these lumps fluctuates significantly
from place to place. This creates relatively large fluctua-
tions of mass density in Q balls across both subhorizon
and superhorizon distances. Since the energy density of a
gas of Q balls redshifts as mass, it can come to dominate
the energy density temporarily, until the Q balls decay,
returning the Universe to a radiation dominated era. The
growth of structure during the Q-ball dominated phase can
lead to copious production of primordial black holes.
Formation of Q balls requires nothing more than some

scalar field with a relatively flat potential at the end of
inflation. For example, supersymmetric theories predict the
existence of scalar fields with flat potentials. PBH for-
mation in supersymmetric theories is, therefore, likely, even
if the scale of supersymmetry breaking exceeds the reach of
existing colliders.

A similar process can occur with topological defects,
which can also lead to relatively large inhomogeneities.
The discussion of topological defects is complicated by
their nontrivial evolution. We focus primarily on Q balls,
and briefly comment on topological defects below.
Formation of Q balls occurs by fragmentation of a scalar

condensate after inflation [20]. While supersymmetry is a
well-motivated theory for scalar fields carrying global
charges and having flat potentials [18,21], our discussion
can be easily generalized to an arbitrary scalar field with a
global Uð1Þ symmetry in the potential. Supersymmetric
potentials generically contain flat directions that are lifted
only by supersymmetry breaking terms. Some of the scalar
fields that parametrize the flat directions carry a conserved
Uð1Þ quantum number, such as the baryon or lepton
number. During inflation, these field develop a large
vacuum expectation value [16–19], leading to a large,
nonzero global charge density. When inflation is over,
the scalar condensate ϕðtÞ ¼ ϕ0ðtÞ expfiθðtÞg relaxes to
the minimum of the potential by a coherent classical motion
with _θ ≠ 0 due to the initial conditions and possible CP
violation at a high scale.
The initially homogeneous condensate is unstable with

respect to fragmentation into nontopological solitons, Q
balls [22]. Q balls exist in the spectrum of every super-
symmetric generalization of the standard model [23,24],
and they can be stable or long-lived along a flat direction
[20,25]. In the case of a relatively large charge density
(which is necessary for Affleck-Dine baryogenesis
[18,21]), the stability of Q balls can be analyzed analyti-
cally [20,26,27]; these results agree well with numerical
simulations [28]. One finds that the almost homogeneous
condensate develops an instability with wave numbers in
the range 0 < k < kmax, where kmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − V 00ðϕ0Þ

p
, and

ω ¼ _θ. The fastest growing modes of instability have a
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wavelength ∼10−2�1 of the horizon size at the time of
fragmentation, and they create isolated lumps of conden-
sate that evolve intoQ balls. Numerical simulations [28,29]
indicate that most of the condensate ends up in lumps.
However, since the mass of Q balls is a nonlinear function
of the Q-ball size, Q-ball formation, in general, leads to a
nonuniform distribution of energy density in the matter
component represented by the scalar condensate. Q balls
can also form when the charge density is small or 0, in
which case both positively and negatively charged Q balls
are produced [28]; here we do not consider this possibility.
If the potential is flat, a Q ball with global charge Q has

mass M ∝ jQj3=4 [20,25]. The density fluctuations arise
from the nonlinear relation between M and Q. In general,
M ∼ jQjα, where α depends on the potential. If α ¼ 1, some
density fluctuations may arise from global charge redis-
tribution during fragmentation. We do not consider this
possibility here, and we limit our discussion to α ¼ 3=4.
Q-ball number distribution.—Let us consider N identi-

cal Q balls in some volume V at the time of fragmentation
tf. We assume that the probability to find N Q balls in a
given volume V follows a Poisson distribution,

pðN;VÞ ¼ e−ðNfV=VfÞ ðNfV=VfÞN
N!

; N ∈ Zþ; ð1Þ

where Nf is the average number of Q balls per horizon
(within volume Vf ¼ ð4π=3Þt3f, the horizon volume at
fragmentation). The mass of a volume containing N Q
balls is given byMðNÞ ¼ NMQ ball ¼ ΛNQα. If this mass is
large enough, it becomes the mass of the black hole
resulting from the collapse. The charge within the volume
V at fragmentation is assumed to be distributed equally
among the N Q balls, so that NQ ¼ QfV=Vf (with Qf

being the total charge on the horizon at tf), which gives us
the Q-ball cluster distribution function FQ,

FQðM;N;VÞ ¼ δ

�
M −Mf

�
N
Nf

�
1−α

�
V
Vf

�
α
�
pðN;VÞ;

ð2Þ

where Mf ¼ ΛQα
fN

1−α
f is the average Q-ball horizon mass

at tf. FQ represents the probability density to find a massM
composed of N Q balls within a volume V.
The average background energy density (over the largest

scales) in Q balls at tf is then given by

hρQðtfÞi ¼ lim
V→∞

hMi
V

¼ Mf

Vf
; ð3Þ

with the average performed over M and N.
Q balls are stable with respect to decay into scalar

particles, but they can decay into fermions lighter than ω
[30–32]. Q balls can also decay if the Uð1Þ symmetry is

broken by some higher-dimension operators [33–36]. We
parametrize this decay by the total decay width ΓQ ¼ 1=τQ,
which includes all decay channels. The energy density in
the form ofQ balls scales with expansion of the Universe as
decaying matter [37], and the decays also contribute to
radiation density. We take this into account in a consistent
manner using the analysis of Scherrer and Turner [37]. The
energy density of Q balls then evolves as hρQðtÞi ¼
hρQðtfÞiðaf=aÞ3eðtf−tÞ=τQ , and we assume that at some
time tQ the Q balls come to dominate, as shown in Fig. 1.
Density perturbations can grow starting at time tQ when

the Universe becomes matter dominated [i.e., ρRðtQÞ ¼
hρQðtQÞi] until the time when the Q balls decay, returning
the Universe to a radiation dominated phase. The structures
can grow on all length scales above some minimum size
Vmin, which we take to be the volume containing an average
number of Q balls Nmin ∼ 10. This acts as a cutoff to the
low-mass part of the PBH spectrum, but does not influence
any larger scales, and we have checked that the results are
not sensitive to this choice as long as Nmin ≪ Nf.
The density contrast in Q balls at fragmentation δðtfÞ of

a specific mass scale M composed of N Q balls within a
volume V at tf is given by

δðtfÞ ¼
δρ

hρQi
¼ M=V

hρQi
− 1 ¼

�
N=Nf

M=Mf

�1−α
α

− 1; ð4Þ

where in the last line we have used the argument of the delta
function in Eq. (2) to eliminate V. Note that when α ¼ 1,
the density perturbations vanish identically.

FIG. 1. Cosmological timeline corresponding to the production
of PBH. The orange dashed line denotes radiation density ρR, the
blue dashed line isQ-ball energy density hρQi, and the black solid
line is black hole density hρBHi. The inset in the upper right is a
zoomed-in view of the early matter dominated era (tQ < t < tR),
with density scaled by a3 (so that nondecaying matter is
represented by a straight horizontal line). The horizontal dashed
line indicates the observed present-day dark matter density. Here
the parameters correspond to the solid line in Fig. 3.
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The density perturbations are frozen during the
radiation dominated era, but they grow linearly in the
scale factor during the Q-ball dominated epoch, δðtÞ ¼
δðtfÞða=aQÞ ¼ δðtfÞðt=tQÞ2=3. The structure growth gen-
erally goes nonlinear and decouples from the expansion
around δ > δc ∼ 1.7, at which point the overdense regions
collapse and become gravitationally bound. However,
some structures with δ < δc can still collapse, and
not all structures with δ > δc are guaranteed to collapse
into black holes. Because of nonsphericity of the
gravitationally bound structures, only a fraction β ¼
γδ13=2ðtRÞðM=MQÞ13=3 [where γ ≈ 2 × 10−2 and MQ ¼
MfðtQ=tfÞ3=2 is the horizon mass at the beginning of the
Q-ball dominated era] actually collapses spherically to
form black holes [9,38,39] by the end of the Q-ball
dominated era (tR). Structures with δ ≥ δc do not continue
to grow (as perturbations are gravitationally bound at this
point and cease developing), so that β¼γδ13=2c ðM=MQÞ13=3
for δðtRÞ > δc. Despite these refinements, the outcome does
not appear to depend sensitively on the value of δc.
Additional care must be taken to extend this to scales that

enter the horizon during theQ-ball dominated era, and thus
are not subject to the same amount of growth as the
subhorizon modes. This can be done by calculating the
time th at which a comoving superhorizon volume V
at tf reenters the horizon: (aðthÞ=af)3V¼Vh¼ð4π=3Þt3h.
Then, the amplification of these superhorizon modes
at the end of the Q-ball dominated era is given by
δðtfÞ(aR=aðthÞ) rather than δðtfÞ(aR=aðtQÞ). Also,
because this expression is only valid for small δ, we cap
its value at βmax ¼ 1 to avoid collapse probabilities over
unity. Structure growth ends once the radiation density
comes to dominate again at time tR, which is defined
by ρRðtRÞ ¼ hρQðtRÞi.
PBH production in this mechanism can be analyzed by

first calculating the energy density of Q balls at tf that will
eventually form black holes by tR by weighting the Q-ball
energy density M=V by the collapse fraction/probability β
evaluated at tR, and then redshifting this value appropri-
ately. In addition, one must sum the contributions of all
length scales V through a coarse-graining procedure. This
is accomplished for some arbitrary function gðVÞ via the
procedure

X
fVg

gðVÞ ¼ gðV1Þ þ gðV1=χÞ þ � � � ¼
XImax

i¼1

gðV1χ
1−iÞ ð5Þ

≈
Z

Imax

1

di gðV1χ
1−iÞ ¼ 1

ln χ

Z
V1

Vmin

dV
V

gðVÞ; ð6Þ

where we have used the Euler-Maclaurin summation
approximation, χ∼Oð1–10Þ is a parameter of the coarse-
graining, and Vmin is the smallest volume scale under

consideration, set by Nmin. We henceforth take χ ¼ e for
simplicity.
At tR, the black hole density is given by

hρBHðtRÞi ¼
�
af
aR

�
3X∞
N¼1

Z
VR

Vmin

dV
V

Z
∞

0

dM

�
β
M
V

�
FQ; ð7Þ

where VR ¼ ð4π=3Þt3RðtQ=tRÞ2ðtf=tQÞ3=2 is the size of the
comoving horizon at tR, evaluated at tf. The black hole
energy density then redshifts like nonrelativistic mat-
ter, hρBHðtÞi ¼ hρBHðtRÞi(aR=aðtÞ)3.
The mass function dhρBHi=dM can be evaluated using

the integrand of Eq. (7) (hρBHi ¼
R
dMdhρBHi=dM). Using

this “differential density” mass function, shown in Fig. 2,
one can glean some information regarding how the param-
eters of the theory affect the distribution of black hole mass.
We find that the spectrum depends only on the dimension-
less parameters Nf, η ¼ M=Mf, rf ¼ tQ=tf, and r ¼ tR=tQ
(given this set, plus a value for tf, fixes the remaining
parameters τQ, Mf due to consistency conditions on the
boundary of the Q-ball dominated era). First, it is obvious
from the normalization of each curve that the lower the
number of Q balls per horizon, the more black holes are
created. This is expected, as the Poisson statistics suppress
the density fluctuations for large Q-ball number. Second,
there is a hard lower cutoff in the PBH mass, which occurs
at η ¼ Nmin=Nf. Above that, the BH number sharply
increases with a power law ∝ η2.7; the extent of this region
depends on the magnitude of r, with larger values leading
to a larger range. Above that, the spectrum becomes
approximately flat (∝ η−0.15), meaning that the number
of black holes in each decade of mass is comparable. Of
course, the upper end of this range dominates the energy
density of the distribution. Then, at aroundM ¼ MQ, there
is a sharp transition and the slope becomes strongly
negative (∝ η−4.5) due to the reduced growth the super-
horizon modes are subject to. Then, there is an upper

FIG. 2. Differential fraction of Q-ball energy density trans-
ferred to BH density as a function of η ¼ M=Mf . This spectrum
corresponds to the parameters for the solid black line in Fig. 3,
which accounts for 100% of the dark matter.
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exponential cutoff at η ∼ 108=Nf due once again to the
Poisson statistics (the cutoff appears to take precedence
over previously mentioned transitions). For the parameters
given in Fig. 2, the spectrum is highly developed, in the
sense that it has been subject to a lengthy matter dominated
era of growth (r ≫ 1).
Experimental constraints can be considered after we

evolve the black hole distribution to the present day. In
simple terms, we just have to take Eq. (7) and multiply it by
ðaðt0Þ=aðtRÞÞ−3. Naïvely, one would use the equation
a1=a2 ¼ ðt1=t2Þn (with n ¼ 1=2 or 2=3) keeping in mind
that the Universe transitions back to a matter dominated
era around zeq ≈ 3360. However, an extended Q-ball
dominated era (r ≫ 1) alters the time scale of cosmological
thermal history because the radiation temperature is
altered by the Q-ball decays and the form of the scale
factor during this era. In this case, one must use a1=a2 ¼
g1=3�S ðT2ÞT2=g

1=3
�S ðT1ÞT1 and evolve from TR [defined by

ρRðtRÞ ¼ ðπ2=30Þg�ðTRÞT4
R] to T0 ¼ 2.7 K ¼ 2.3 meV.

This has the advantage of accurately accounting for any
deviation from cosmological history. In addition, we
enforce an additional constraint TR > TBBN ∼MeV, so
that the entropy injection from Q-ball decays does not
interfere with nucleosynthesis.
We now apply observational constraints to our model.

There are a variety of constraints [9,11,40–43], coming
from a number of sources, including gamma rays from
Hawking radiation, femto-, micro-, and millilensing, white
dwarf capture, pulsar timing arrays, and accretion effects on
the cosmic microwave background. These constraints can
be observed in Fig. 3 in orange. It is important to note that

the constraints as plotted only apply for a monochromatic
mass distribution. The mass spectrum of this model clearly
extends over several decades, and so we must translate
these constraints into something applicable to our model.
We adopt the procedure outlined in [9], which amounts to
comparing the expected dark matter fraction to the con-
straints on an interval-by-interval basis. As a guide, we also
plot ~fBHðMÞ≡ ρ−1DMdhρBHi=dðlnMÞ, which gives an
approximate idea of how the expected BH density in each
logarithmic interval of mass compares with the constraints.
We have verified for the given parameters that the con-
straints have not been violated. We note that the solid curve
corresponds to a distribution that makes up 100% of the
dark matter with peak black hole mass 1020 g. For the case
of supersymmetric Q balls with the SUSY-breaking
scale ΛSUSY > 10 TeV, the fragmentation time cannot be
much longer than the Hubble time H−1 ∼Mp=g

1=2
� Λ2

SUSY≲
8 × 10−15 s, which corresponds to peak PBH masses of
about 1023 g. The case illustrated in Fig. 3 satisfies this
bound; thus, primordial black holes from supersymmetric
Q balls can account for 100% of the dark matter.
The dot-dashed curve corresponds to a distribution that

only makes up 0.1% of the dark matter, but has a peak BH
mass of 30 M⊙. This is suggestive, as even if the dark
matter is not entirely PBHs, they might still be responsible
for some of the black hole merger events detected by
LIGO [13].
Topological defect formation can also lead to the

production of PBHs if the topological defects come to
dominate the energy density. The analysis is sufficiently
different from that of Q balls, primarily because typically
only one defect per horizon is produced at the time of
formation due to the Kibble mechanism [44]. However, the
general mechanism remains the same: small number
densities of defects lead to large fluctuations relative to
the background density, these fluctuations become gravi-
tationally bound and collapse to form black holes once the
relic density has come to dominate, and the relics decay due
to some instability (such as gravitational waves or decay to
Nambu-Goldstone bosons in the case of cosmic strings). In
order to accurately model production of PBHs from these
defects, one should calculate the expected density pertur-
bations on initially superhorizon scales, which only begin
to grow once these scales pass back within the horizon and
the defects come to dominate the Universe’s energy density.
Cosmic strings are probably the most likely candidate for
primordial relics due to the fact that they are typically
cosmologically safe, as the energy density in string loops is
diluted during expansion at the same rate as radiation,
a−4 [45,46].
We have shown that number density fluctuations of

nontopological solitons in the early Universe can be
responsible for production of primordial black holes, and
furthermore, that these black holes can make up all or part
of the dark matter. Scalar fields and Q-ball formation are

FIG. 3. Comparison of the observational constraints on
f ≡ ΩPBH=ΩDM (orange, shaded), with the expected value
of ~fBHðMÞ≡ ρ−1DMdhρBHi=dðlnMÞ for some hand-picked
parameters (black). Parameters for the three curves are tf¼
1.12×10−17 s, rf¼1.1, r¼4.47×102,Nf¼106, f¼1 (solid line),
tf¼2.0×10−11 s, rf ¼ 1.1, r ¼ 1.58 × 103, Nf ¼ 106, f ¼ 0.2
(dashed line), and tf ¼ 1.0 × 10−3 s, rf ¼ 1.1, r ¼ 4.47 × 102,
Nf ¼ 105, f ¼ 0.001 (dot-dashed line).
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generic features of supersymmetric extensions of the
standard model, which provides a good motivation for this
mechanism. Other scalar fields may exist and may undergo
fragmentation, leading to PBH formation. In addition, we
have elucidated a possible mechanism through which
topological defects may be able to produce primordial
black holes as well under certain circumstances.
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