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It is shown that the work fluctuations and work distribution functions are fundamentally different in
systems with short-range versus long-range correlations. The two cases considered with long-range
correlations are magnetic work fluctuations in an equilibrium isotropic ferromagnet and work fluctuations
in a nonequilibrium fluid with a temperature gradient. The long-range correlations in the former case are
due to equilibrium Goldstone modes, while in the latter they are due to generic nonequilibrium effects. The
magnetic case is of particular interest, since an external magnetic field can be used to tune the system from
one with long-range correlations to one with only short-range correlations. It is shown that in systems with
long-range correlations the work distribution is extraordinarily broad compared to systems with only short-
range correlations. Surprisingly, these results imply that fluctuation theorems such as the Jarzynski
fluctuation theorem are more useful in systems with long-range correlations than in systems with short-
range correlations.
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In recent years, there has been an enormous amount of
research on some of the fundamental aspects of thermo-
dynamics, engine efficiencies, and especially on so-called
fluctuation theorems [1–7]. One of the central quantities
considered is the thermodynamic work, its fluctuations, and
the complete work distribution. For example, the Jarzynski
fluctuation theorem (JFT) [4] is he−βWi ¼ e−βΔF, where
β ¼ 1=ðkBTÞ, W is the work, the angular brackets denote
an average over a work distribution from one thermody-
namic state to another, and ΔF is the free energy difference
between the two states. However, for systems with short-
range correlations, the practical use of fluctuation theorems,
like the JFT, is limited to only very small systems. The
purpose of this Letter is to demonstrate that systems with
long-range correlations typically feature extraordinary
broad work distributions, so that fluctuation theorems
become applicable well beyond the nanometer scale.
The very broad work distribution resulting from the

presence of long-range correlations implies that the JFT
will be more useful in systems with long-range correlations
than in systems with short-range correlations. Physically,
this is because a broad work distribution provides more
support for quantities, such as e−βW , determined by the tails
of the distribution than a sharply peaked distribution with
very small tails. For this purpose, we will compare and
contrast the work distribution in an equilibrium isotropic
ferromagnet, where there are long-range correlations due to
Goldstone’s theorem [8,9], and a nonequilibrium fluid in a
temperature gradient, where there are generic long-range
correlations [10–12], to the work distribution in systems
with only short-range correlations. We generally find that in
the long-range case the distribution is very broad compared

to the short-range case and that, for a fixed system size, its
weight near the origin is suppressed compared to the short-
range case. We also find that the detailed structure of the
work distributions in systems with long-range correlations
are very similar, exhibiting a type of universality. We finally
note that long-range correlations of any quantity always
imply a broad distribution of that quantity. Work distribu-
tions will then be broad if they are determined by a quantity
with long-range correlations. The examples considered
here satisfy this requirement.
For the magnetic case, we assume a single three-dimen-

sional ferromagnetic domain that is ordered in the z
direction. To be specific, we assume the domain to exist
in the region between z ¼ 0 and z ¼ L and that there is
perfect ordering in the z direction at these boundaries. That
is, the transverse magnetic fluctuations vanish at z ¼ 0 and
z ¼ L. We further assume periodic boundary conditions in
the transverse direction with Lx ¼ Ly ¼ L⊥ and that
L⊥=L ≫ 1. If h is the magnitude of an external magnetic
field in the z direction, and if we assume that an applied
field does not change the system volume, then the differ-
ential fluctuating magnetic work can be defined by [13–15]
d eWmagðxÞ ¼ −emzðxÞdh, with emzðxÞ the fluctuating
magnetization in the z direction. For a small magnetic
field, the total fluctuating magnetic work is simply eWmag ¼
−L2⊥LhemzðLÞ, where emzðLÞ denotes the spatial average
of emzðxÞ.
Here we are interested in the fluctuating magnetic workeWmag, deep in the ferromagnetic phase where mz is

given by the transverse magnetization fluctuations πðxÞ
as emzðxÞ ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − π2ðxÞ=m2

0

p
≈m0 − π2ðxÞ=2m0 [16].
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For small fields, then eWmag ¼ L2⊥Lhπ2ðLÞ=2m0, where
π2ðLÞ is the spatial average of π2ðxÞ. The π fluctuations
are of long range at zero magnetic field due to
Goldstone’s theorem. In wave-number space, where
πðxÞ ¼ ð2=LÞPN¼1

R
k⊥ e

ik⊥·x⊥ sinðNπz=LÞπðkÞ, and at
finite h they are given by [8,9]

hπiðkÞπjð−kÞi ¼
LL2⊥δijkBT
Jk2 þ h=m0

: ð1Þ

Here i, j ¼ ðx; yÞ, J is related to the magnetic exchange
interaction, kB is Boltzmann’s constant, T is the temper-

ature, and k2 ¼ k2⊥ þ k2z , with k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
the trans-

verse wave number and k2z ¼ N2π2=L2. At h ¼ 0, the 1=k2

dependence in Eq. (1) indicates long-range or power law
correlations in real space.
As a second example, we consider a fluid in a non-

equilibrium steady state (NESS) with a temperature gra-
dient in the z direction. The dimension of the system in the
z direction is L, while in the perpendicular direction it is
Lx ¼ Ly ¼ L⊥, and we again assume L⊥ ≫ L. For most
liquid systems, the thermal conductivity varies little with
the temperature, so we can assume a linear temperature
profile given by

TðzÞ ¼ T0 þ
ΔT
L

z: ð2Þ

Here ΔT is the temperature difference between the two
walls in the z direction. In this case, there are long-range
temperature fluctuations δTðxÞ. We again assume periodic
boundary conditions in the transverse direction and per-
fectly conducting walls at z ¼ 0 and z ¼ L so that as a
function of position δTðxÞ exactly vanishes at the walls.
The long-range part of the local temperature fluctuations,

δTðxÞ, is, in wave-number space [10–12,17,18], δTðxÞ ¼
ð2=LÞPN¼1

R
k⊥ e

ik⊥·x⊥ sinðNπz=LÞδTðkÞ:

hδTðkÞδTð−kÞiNESS ¼
LL2⊥kBT

ρDTðνþDTÞ
ðk⊥∇TÞ2

k6
: ð3Þ

Here ρ, ν, and DT are the mass density, the kinematic
viscosity, and thermal diffusivity of the fluid, respectively.
All of the thermophysical parameters in Eq. (2.3) may be
identified with their spatially averaged values [19]. We note
that this correlation function is long ranged as indicated by
its k−4 behavior at small wave numbers, while the equi-
librium temperature fluctuations are of very short range in
space with no singular behavior of the corresponding
Fourier transforms at small wave numbers. Note also that,
since ∇T ∝ 1=L, the length scaling behavior of Eqs. (1)
and (3) are identical for h → 0.
The important fluctuating contribution to the pressure in

a NESS has been identified elsewhere [20,21] as epNEðxÞ ¼
A½δTðxÞ�2 with A ¼ ρðγ − 1Þfcp − ½∂ðcp=αÞ=∂T�pg=2T.

Here cp, γ, and α are, respectively, the specific heat
capacity at constant pressure, the ratio of specific heat
capacities, and the coefficient of thermal expansion. The
fluctuating work in this case is given by d eWNE ¼
−epNEðLÞdV, where epNEðLÞ is the spatial average of
~pNEðxÞ [22–24]. If the system expands in the z direction
from length L to length Lð1þ ΔÞ, and if jΔj ≪ 1, then
the fluctuating nonequilibrium work is simply eWNE ¼
−L2⊥LΔepNEðLÞ. To simplify our notation, so that both
the magnetic and nonequilibrium work are positive, we
actually consider a contraction and use Δ ¼ −jΔj.
We will first give the results and then discuss their

applicability. Technical details are given afterwards and in
Supplemental Material [25]. From Eq. (1), it is obvious that
the long-range aspect of the magnetic work distribution will
occur only for small h. As shown in Supplemental Material
[25], we find that the work cumulant for both cases,
retaining only the universal long-range contributions
[26], can be written, setting kBT ¼ 1, as

h ~Wn
αicumulant ≡ καðnÞ ¼ aα

L2⊥
L2

ðbαL2ÞngαðnÞ; ð4Þ

with α ¼ ðmag;NEÞ, amag ¼ π=4, bmag ¼ 2h=ðπ2m0JÞ,
gmagðnÞ¼ðn−2Þ!ζð2n−2Þ, aNE¼π=8, bNE¼8AlðΔTÞ2jΔj=
27π4, and gNEðnÞ¼ð27=4Þnζð4n−2Þn!ðn−1Þ!ð2n−2Þ!=
ð3n−1Þ!. Here l ¼ ½ρDTðνþDTÞ�−1 is a microscopic
length, and ζðnÞ is the Riemann zeta function of the order
of n. For n ≫ 1, we note gmag=n! ≈ 1=n2 and gNE=n!≈
ð ffiffiffiffiffiffi

3π
p

=2Þ=n3=2.
With Eq. (4), we can determine the work distribution,

defined by ραðWÞ, α ¼ ðmag;NEÞ, as follows. First we
define a cumulant generating function KαðtÞ by

KαðtÞ ¼ ln
�Z

dWeWtραðWÞ
�

¼
X
n¼1

καðnÞtn
n!

: ð5Þ

The work distribution is now formally given by the inverse
transform

ραðWÞ ¼
Z

dte−WtþKαðtÞ: ð6Þ

The integral in Eq. (6) can be evaluated using saddle-point
or steepest-descent methods, because the scale ofW grows
with L2⊥=L2. The important feature in the evaluation of
Eq. (6) is the convergence property, or singularity structure,
of KαðtÞ [Eq. (5)], which in turn is determined by the large-
n behavior of καðnÞ, given below Eq. (4).
Neglecting nonexponential prefactors, one generally

finds

ραðWÞ ∝ e−aαðL2⊥=L2ÞGαðbWαÞθðWÞ; ð7Þ
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where bWα ¼ W=aαbαL2⊥ and Gαð bWαÞ ¼ bWαK0
α
−1ð bWαÞ −

Kα½K0
α
−1ð bWαÞ� with K0

α
−1 the inverse function of

K0
α ¼ dKαðtÞ=dðbαL2tÞ. The crucial aspect of Eq. (7) is

that the function Gα does not explicitly depend on the
system size, so that the scale of the exponential is L2⊥=L2,
while the scale ofW in the tails is ∝ L2⊥. In detail, one finds
for the tails of the distributions [see Eqs. (19)–(21)]

ραðW → 0Þ ∝ e−aα;0ðL2⊥=L2Þðln 1=bWαÞsα θðWÞ ð8Þ
and

ραðW → ∞Þ ∝ e−aα;∞ðL2⊥=L2ÞbWαθðWÞ: ð9Þ
Here smag ¼ 2, sNE ¼ 3=2, amag;0 ¼ π=8, aNE;0 ¼ π=4

ffiffiffi
3

p
,

amag;∞ ¼ π=4, and aNE;∞ ¼ π=8. In between the tails, the
distribution functions can be taken to be Gaussian:

ραðW ≈ hWiαÞ ∝ e−ðaα;GL2⊥=2L2ÞðWα−1Þ2θðWÞ; ð10Þ
where Wα ¼ W=hWiα, with hWiα the average work deter-
mined by ρα, and amag;G ¼ 3=2π and aNE;G ¼ 1575=64π.
These results are to be contrasted to those for a system with
only short-range (SR) correlations. For example, for an
ideal gas of N particles undergoing a fractional volume
change ∝ ϵ ¼ ð1þ ΔÞ−2=3 − 1 > 0, the equivalent results
are [27]

ρSRðW → 0Þ ∝ e−ð3=2ÞN lnð1=WÞθðWÞ; ð11Þ

ρSRðW → ∞Þ ∝ e−ð3=2ÞNWθðWÞ; ð12Þ

and

ρSRðW ≈ hWiÞ ∝ e−ð3=2ÞNðW−1Þ2θðWÞ; ð13Þ

with hWi ¼ 3Nϵ=2. Note that the prefactor in the expo-
nentials in Eqs. (11)–(13) scales as the system size,
N ∝ L2⊥L.
Comparing Eqs. (7)–(10) with Eqs. (11)–(13), two things

should be noted. First, because we focus on long-range
fluctuating contributions to the work, the average work in
Eqs. (7)–(10) scales as ∝ L2⊥ and not like N ∝ L2⊥L as in
Eqs. (11)–(13). This explains the numerators in the
exponential factors in Eqs. (7)–(10). Second, the long-
range nature of the correlations leads to the extra 1=L2

factors in these equations. That is, for the long-range case
we have hðW − hWiαÞ2iα ∝ L2hWiα, while for systems
with short-range correlations the relationship is
hðW − hWiαÞ2i ∝ hWi. The extra factor of L2 indicates
that the work distribution in system with long-range
correlations is extraordinarily broad compared to the
short-range case.
As an application of these results, we have computed the

fluctuations in the JFT. That is, with Ω ¼ e−W we consider
the fluctuation measure

ϵΩ;α ¼
hΩ2iα − hΩiα2

hΩiα2
: ð14Þ

With

ϵΩ;α ¼ eðL2⊥=L2ÞFαðbαL2Þ; ð15Þ
we obtain, neglecting nonexponential prefactors,

FαðbαL2 ≪ 1Þ ≈ cαðbαL2Þ2 ð16Þ
with cmag ¼ π3=24 and cNE ¼ 9π7=½29ð175Þ�. We also
obtain [28,29]

FNEðbNEL2 ≫ 1Þ ≈ π

4
ffiffiffi
3

p ½lnðbNEL2Þ�3=2: ð17Þ

Note that, because bαL2 ≪ 1, Eq. (16) implies that the
exponential factor in Eq. (15) is ≪ L2⊥=L2, while Eq. (17)
implies that the exponential factor in Eq. (15) is, for
bNEL2 ≫ 1, logarithmically larger than L2⊥=L2. For the
SR case one obtains [22]

ϵΩ;SR ¼ eð3=2ÞN lnf1þ½ϵ2=ð1þ2ϵÞ�g: ð18Þ

ϵ in Eq. (18) is analogous to bαL2 in Eq. (15), and, since
ϵΩ;SR ≈ e3Nϵ2=2 for ϵ ≪ 1 and ϵΩ;SR ≈ e3N ln ϵ=2 for ϵ ≫ 1,
we see these limiting cases are structurally like Eqs. (15)–
(17). The obvious fundamental distinction between the
long-range and short-range cases is that in the former the
scale of the exponential is L2⊥=L2, while in the latter it is
the system size or volume. We emphasize that, while the
enormous fluctuations in the short-range case, for N ≫ 1,
restrict the utility of the JFT for such systems, our results
imply that the JFT will be much more useful in systems
with long-range correlations.
We next give some further technical details. We focus on

the magnetic case, which is a bit simpler than the non-
equilibrium fluid case. First, Eq. (4) follows from the
Gaussian nature of the π fluctuations [30] and is derived in
Supplemental Material [25]. Second, it is easy to show that
the tails of the distribution are determined by the large n
behavior of gmagðnÞ in Eq. (4). To that end, we use the
large-n result for gmagðnÞ for all n. For the magnetic case,
this allows us to sum the t derivative of the cumulant
generating function, KmagðtÞ. The saddle-point equation for
t in Eq. (6) is then

W ¼ dKmagðtÞ
dt

¼ −
amagL2⊥
L2t

lnð1 − bmagL2tÞ: ð19Þ

Note that this equation has a solution only for W ≥ 0. The
solution for W → ∞ is

bmagL2t ≈ 1 − e−bWmag ; ð20Þ

and the solution for W → 0 is, where t ¼ −jtj,
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bmagL2jtj ≈ 1bWmag

ln
1bWmag

: ð21Þ

Equations (8) and (9) for the magnetic work case can
then be obtained by integrating Eq. (19) for bmagL2jtj ¼
−bmagL2t ≫ 1 and bmagL2t ≈ 1, respectively. The Gaussian
distribution, Eq. (10), follows from the small-t behavior of
KmagðtÞ and is fixed by the average magnetic work and its
fluctuations.
We conclude with a number of remarks.
1. As noted below Eq. (13), the average work in Eqs. (7)–

(10) scales as ∝ L2⊥ and not as the system volume. If the
average work does scale as V, the fluctuations will still be
determined by the long-range correlations. In this case, the
results summarized by Eqs. (7)–(10) are changed as
follows. The prefactor of the Gaussian, L2⊥=L2, in
Eq. (10) is replaced by L2⊥, and the Wα in the Gaussian
is W normalized by the actual average work ∝ V. The tails
of the distribution, however, are still controlled by the same
prefactors in the exponential ∝ L2⊥=L2 and are the same
functions of W, normalized by aαbαL2⊥, as in Eqs. (8) and
(9) [31]. The crossovers to the tail distribution occur when
jWα − 1j ≈Oð1=LÞ. Finally, the length and b scalings in
Eqs. (15)–(17) are unchanged.
2. The dimensionless parameter characterizing the mag-

netic field in Eq. (1) is bmagL2, so that, in taking the
bmagL2 ≫ 1 limit, a finite field must be taken into account
there as well as in integrating d eWmagðxÞ ¼ −emzðxÞdh. In
the calculations, this leads to a factor of ðbmagL2Þ3=2−n in
Eq. (4). The important result is that every term in Eq. (4) is
∝ L2⊥Lh3=2 ¼ Vh3=2. Unlike a magnet in a small magnetic
field, this work distribution is now in the short-range
universality class, with a nonanalytic field dependence
that reflects the long-range correlations at zero field. Also
of interest is Eq. (14) for this case: ϵΩ;mag ¼ ecL

2⊥Lðh=m0JÞ3=2 ,
with c a number of the order of unity.
Physically, all of this is obvious: For finite h the

correlations implied by Eq. (1) are of short range, so that
one expects the prefactors in the work distribution to scale
as the system volume, just as they do in Eqs. (11)–(13). The
h3=2 follows from the fact that the longitudinal magnetic
correlations in a three-dimensional isotropic ferromagnet
scale as [30,32] χLðh → 0Þ ∝ 1=h1=2, and in the finite field
magnetic work fluctuation calculation, this result is inte-
grated twice.
3. Similar results are expected in other systems with

long-range correlations, no matter the source of the
correlations. Of particular interest are biological or elec-
tronic and spintronic systems. For example, in active matter
or living systems, various types of broken symmetries and
Goldstone modes have been discussed in the literature
[33,34]. Similarly, in electronic and spintronic systems,
long-range correlations can arise from, for example, various
types of magnetic order or exist even more generically at
low or zero temperatures [35].
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